• 제목/요약/키워드: Micro Polishing

검색결과 182건 처리시간 0.028초

광디스크용 마이크로미러의 설계 및 제작에 관한 연구 (A Study on the Design and Fabrication for the Micro-Mirror of Optical Disk System)

  • 손덕수;김종완;임경화;서화일;이우영
    • 한국정밀공학회지
    • /
    • 제19권11호
    • /
    • pp.211-220
    • /
    • 2002
  • Optical disk drives read information by replacing a laser beam on the disk track. As information has become larger, the more accurate position control of a laser beam is necessary. In this paper, we report the analysis and fabrication of the micro mirror for optical disk drivers. A coupled simulation of gas flow and structural displacement of the micro mirror using the Finite-Element-Method is applied to this. The mirror was fabricated by using MEMS technology. Especially, the process using the lapping and polishing step after the bonding of the mirror and electrode plates was employed for the Process reliability. The mirror size was 2.5mm${\times}$3mm and it needed about 35V for displacement of 3.2 ${\mu}$.

연마방법에 따른 복합레진의 표면특성 평가 (Effects of Polishing Methods on the Surface Characteristics of Composite Resins)

  • 백민경;김종철;장기택
    • 대한소아치과학회지
    • /
    • 제43권3호
    • /
    • pp.275-283
    • /
    • 2016
  • 본 연구는 복합레진의 연마방법에 따른 표면특성을 평가하기 위해, microhybrid 레진(Filtek$^{TM}$ Z250)과 nanofill 레진(Filtek$^{TM}$ Z350)을 연마 전, abrasive disk(Sof-lex) 연마 후, polishing brush(Occlubrush) 연마 후로 나누어 분석하였다. 그 결과 레진 표면조도는 연마 후 증가하였는데, 미세조도는 연마방법에 따른 차이가 없었으나 거시조도는 Occlubrush를 이용한 경우 현저하게 커졌다(p < 0.05). Sof-lex 연마의 경우 레진의 filler까지 연마되어 표면이 보다 균일한 형상을 보였으나 Occlubrush 연마시편은 기질층이 뜯겨져 나간 불균일한 형상을 보였다. 두 연마방법 간의 미세경도 유의차는 없었으며(p > 0.05), 연마 후 경도 값이 약 25% 상승하였다. 결론적으로, 복합레진의 표면경도 향상을 위하여 적합한 연마가 필요하며, Sof-lex를 이용한 연마가 더 우수한 것으로 사료된다.

Xanthan Gum으로 코팅된 Carbonyl Iron Particle를 이용한 자기유변유체 연마특성에 관한 연구 (Characteristics of MR Polishing using Carbonyl Iron Particles Coated with Xanthan Gum)

  • 이정원;하석재;신봉철;김동우;조명우;최형진
    • 소성∙가공
    • /
    • 제21권2호
    • /
    • pp.138-143
    • /
    • 2012
  • A polishing method using magnetorheological (MR) fluid has been developed as a new precision technique to obtain a fine surface. The process uses a MR fluid that consists of magnetic carbonyl iron (CI) particles, nonmagnetic polishing abrasives, water and stabilizers. But the CI particles in MR fluids cause a severe corrosion problem. When coated with Xanthan gum, the CI particles showed long-term stability in corrosive aqueous environment. The surface roughness obtained from the MR polishing process was evaluated. A series of experiments were performed on fused silica glass using prepared slurries and various process conditions, including different polishing times. Outstanding surface roughness of Ra=2.27nm was obtained on the fused silica glass. The present polishing method could be used to produce ultra-precision micro parts.

3차원 형상 연마를 위한 라운드 엔드밀 타입 MR연마시스템의 재료제거 특성에 관한 연구 (A Study on the Characteristics of Material removal using a Round endmill Type MR Polishing System for 3D Shape)

  • 홍광표;신봉철;김동우;조명우;제태진
    • 한국생산제조학회지
    • /
    • 제20권5호
    • /
    • pp.632-638
    • /
    • 2011
  • Recently, it has been studying for the polishing process of micro parts widely. However, present MR polishing system, it is difficult to minimize electromagnet and to polish sphere or slope parts. Then, it can not be obtained demanded surface quality. In this study, material removal characteristics of BK7 glass using round endmill type MR polishing system were investigated through series of experiment. The experiments were investigated by changing imposed polishing conditions, such as rotational speed and polishing depth. As a results, very high material removal was obtained at 0.7mm gap distance, 1,980rpm.

연마성능 제어를 위한 연마패드표면 해석과 개선 (Polishing Pad Analysis and Improvement to Control Performance)

  • 박재홍;키노시타마사하루;요시다 코이치;박기현;정해도
    • 한국전기전자재료학회논문지
    • /
    • 제20권10호
    • /
    • pp.839-845
    • /
    • 2007
  • In this paper, a polishing pad has been analyzed in detail, to understand surface phenomena of polishing process. The polishing pad plays a key role in polishing process and is one of the important layer in polishing process, because it is a reaction layer of polishing[1]. Pad surface physical property is also ruled by pad profile. The profile and roughness of pad is controlled by different types of conditioning tool. Conditioning tool add mechanical force to pad, and make some roughness and profile. Formed pad surface will affect on polishing performance such as RR (Removal Rate) and uniformity in CMP Pad surface condition is changed by conditioning tool and dummy run and is stable at final. And this research, we want to reduce break-in and dummy polishing process by analysis of pad surface and artificial machining to make stable pad surface. The surface treatment or machining enables to control the surface of polishing pad. Therefore, this research intends to verify the effect of the buffing process on pad surface through analysis of the removal rate, friction force and temperature. In this research, urethane polishing pad which is named IC pad(Nitta-Haas Inc.) and has micro pore structure, is studied because, this type of pad is most conventional type.

팔라듐 합금 수소 분리막의 전처리에 관한 연구 (A Study on the Surface Pre-treatment of Palladium Alloy Hydrogen Membrane)

  • 박동건;김형주;김효진;김동원
    • 한국표면공학회지
    • /
    • 제45권6호
    • /
    • pp.248-256
    • /
    • 2012
  • A Pd-based hydrogen membranes for hydrogen purification and separation need high hydrogen perm-selectivity. The surface roughness of the support is important to coat the pinholes free and thin-film membrane over it. Also, The pinholes drastically decreased the hydrogen perm-selectivity of the Pd-based composite membrane. In order to remove the pinholes, we introduced various surface pre-treatment such as alumina powder packing, nickel electro-plating and micro-polishing pre-treatment. Especially, the micro-polishing pretreatment was very effective in roughness leveling off the surface of the porous nickel support, and it almost completely plugged the pores. Fine Ni particles filled surface pinholes with could form open structure at the interface of Pd alloy coating and Ni support by their diffusion to the membrane and resintering. In this study, a $4{\mu}m$ surface pore-free Pd-Cu-Ni ternary alloy membrane on a porous nickel substrate was successfully prepared by micro-polishing, high temperature sputtering and Cu-reflow process. And $H_2$ permeation and $N_2$ leak tests showed that the Pd-Cu-Ni ternary alloy hydrogen membrane achieved both high permeability of $13.2ml{\cdot}cm^{-2}{\cdot}min^{-1}{\cdot}atm^{-1}$ permation flux and infinite selectivity.

실험계획법에 의한 파라미터 분석과 Run to Run 제어를 이용한 폴리싱 공정 제어 (Run-to-Run Process Control and the Analysis of Process Parameters using Design of Experiment in Surface Finishing)

  • 안병운;박성준;이상조;윤종학
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.92-96
    • /
    • 2004
  • In this paper, polishing method using bonded magnetic abrasive particle has been applied to the micro mold polishing. Through process control using the Run-to-Run control, it tried to form the surface roughness In order to grasp the influence of the surface roughness which is reached by selection of control factor and the factor, a design of experiment was been processed. The study is processed with a purpose of to embody and to maintain the surface roughness of nano scale by the basis of an influence between a control factor and the factors which has been selected in this way. As a result, the result of the process control converged at a target value of surface roughness Ra 10nm and Rmax 50nm

  • PDF

ER 유체를 이용한 미세3차원 행상의 초정밀연마 (Ultraprecision Polishing Technique for Micro 3-Dimensional Structures using ER Fluids)

  • 김욱배;이상조;김용준;이응숙
    • 한국정밀공학회지
    • /
    • 제19권12호
    • /
    • pp.134-141
    • /
    • 2002
  • The ER fluid can be one of efficient materials in ultraprecision polishing for optics, ceramics and semiconductors because of electrically controllable apparent viscosity. To finish small 3 dimensional structures such as the aspherical surface in optical elements, the possible arrangement of a tool, workpiece and auxiliary electrode is described. We examined the influence of the addition of a few abrasive particles on the performance of the ER fluid by measuring yield stress, and observed the behavior of abrasive particles in the ER fluid by a CCD camera, which is also theoretically predicted from the electromechanical principles of particles. On the basis of the above results, the steady flow analysis around the rotating micro tool is worked out considering the non-uniform electric field. Finally, Pyrex glass is polished using the mixture of the ER fluid and abrasive particles, and the effect of the electric field strength is evaluated.

대면적 박판 스탬퍼 정밀 가공을 위한 연구 (A Study on the Precision Processing of Thin Stamper with Global Area)

  • 최두선;제태진;서승호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.632-635
    • /
    • 2003
  • As a process technology of nano pattern with a new conception for economic and practical technology of alternative nano process. process technologies such as Embossing, Imprinting. Molding and Inking are beginning to make its appearance. Among these alternative processes, nano mold process is a process that is of benefit to mass production and keeps excellency of reproduction and high quality of parts. In this study, we experienced micro precision machining technology of nano stamper for the injection mold of optical disk with big capacity. Especially, Flatness and uniformity are important for nano stamper with global area, for the purpose of developing polishing technology of micro precision of Back polishing only being used for nano stamper, we carried out a basic study to secure flatness standards

  • PDF

연마입자의 전기적 분극성을 이용한 초정밀연마기술 (Ultraprecision polishing for micro parts using electric polarization effect of abrasive particles)

  • 이승환;김욱배;이상조
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.227-230
    • /
    • 2002
  • New polishing technique for small parts has been tried out using the principle of particle electromechanics. Common fine abrasives such as alumina, diamond, silicon carbide are dielectric materials which are polarized under an electric field, and a non-uniform electric field makes abrasive particles translate along the field line. Using this principle, We make abrasive particles aggregate in the vicinity of the micro tool which is fir the surface finishing of a small part without contact with it. The behavior of particles is optically measured, and the machined depth of glass is examined.

  • PDF