• Title/Summary/Keyword: Micro Milling Machine

Search Result 55, Processing Time 0.027 seconds

Trends of Flat Mold Machining Technology with Micro Pattern (미세패턴 평판 금형가공 기술동향)

  • Je, Tae-Jin;Choi, Doo-Sun;Jeon, Eun-Chae;Park, Eun-Suk;Choi, Hwan-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.1-6
    • /
    • 2012
  • Recent ultra-precision machining systems have nano-scale resolution, and can machine various shapes of complex structures using five-axis driven modules. These systems are also multi-functional, which can perform various processes such as planing, milling, turning et al. in one system. Micro machining technology using these systems is being developed for machining fine patterns, hybrid patterns and high aspect-ratio patterns on large-area molds with high productivity. These technology is and will be applied continuously to the fields of optics, display, energy, bio, communications and et al. Domestic and foreign trends of micro machining technologies for flat molds were investigated in this study. Especially, we focused on the types and the characteristics of ultra-precision machining systems and application fields of micro patterns machined by the machining system.

Electrochemistry and Corrosion Characteristics of Polyaniline Dispersion Coating for Protection of Steels (강철보호를 위한 폴리아닐린 분산 코팅의 전기화학 및 부식특성)

  • Huh, Jae-Hoon;Oh, Eung-Ju;Cho, Jeong-Hwan
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.2
    • /
    • pp.113-118
    • /
    • 2003
  • Processible polyaniline (PAM) dispersions consisting of polyaniline micro-particles, cyclohexanone, and a polymeric surfactant were prepared in a micro-milling machine with various mixing conditions. The electrochemical properties of the dispersion film coated on Pt electrode were investigated by cyclic voltammetry (CV). The electrochemistry of the PAM dispersion coatings was basically similar to a pure PAM coating based on the results of CV. The results of polarization measurements and open circuit potential measurements carried out in $3\;wt.\%$ NaCI solution showed increase in corrosion potential when the PANI dispersion coatings applied on steel surface. Variation of open circuit potential $(OCP,\;V_{OC})$ of the dispersion coating/steel electrodes was observed, which differed with milling conditions. The results demonstrated practical use of the conducting polymer dispersion as a coating material for corrosion prevention of steel.

The Parametric Influence on Focused Ion Beam Processing of Silicon (집속이온빔의 공정조건이 실리콘 가공에 미치는 영향)

  • Kim, Joon-Hyun;Song, Chun-Sam;Kim, Jong-Hyeong;Jang, Dong-Young;Kim, Joo-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.2
    • /
    • pp.70-77
    • /
    • 2007
  • The application of focused ion beam(FIB) technology has been broadened in the fabrication of nanoscale regime. The extended application of FIB is dependent on complicated reciprocal relation of operating parameters. It is necessary for successful and efficient modifications on the surface of silicon substrate. The primary effect by Gaussian beam intensity is significantly shown from various aperture size, accelerating voltage, and beam current. Also, the secondary effect of other process factors - dwell time, pixel interval, scan mode, and pattern size has affected to etching results. For the process analysis, influence of the secondary factors on FIB micromilling process is examined with respect to sputtering depth during the milling process in silicon material. The results are analyzed by the ratio of signal to noise obtained using design of experiment in each parameter.

A Study on the Adaptive Control in Machining Process (절삭공정의 적응제어에 관한 연구)

  • Song, Ji-Bok;Lee, Man-Hyung;Lee, Si-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.2 no.3
    • /
    • pp.77-83
    • /
    • 1985
  • Adaptive control technique for a milling process is developed and implemented in an NC milling machine retrofitted to enable the micro-computer control. The control algorithm has the objects to guarantee the optimal tool life which can give the predetemined allowable lower limit of surface roughness. The experimental results show 1) that the extended tool life equation has good reliability in normal tool wear conditions. 2) and that the proposed adaptive control technique, which determine the optimal cutting condition by basing on the tool life equation modified continually according to the tool wear measured in real time, performs well.

  • PDF

A Study on the Optimization of Deburring Process for the Micro Channel using EP-MAP Hybrid Process (전해-자기 복합 가공을 이용한 마이크로 채널 디버링공정 최적화)

  • Lee, Sung-Ho;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.298-303
    • /
    • 2013
  • Magnetic abrasive polishing is one of the most promising finishing methods applicable to complex surfaces. Nevertheless this process has a low efficiency when applied to very hardened materials. For this reason, EP-MAP hybrid process was developed. EP-MAP process is expected to machine complex and hardened materials. In this research, deburring process using EP-MAP hybrid process was proposed. EP-MAP deburring process is applied to micro channel, thereby it can obtain both deburring process and polishing process. EP-MAP deburring process on the micro channel was performed. Through design of experiment method, error of height in this process according to process parameter is analyzed. When the level 1 parameter A(magnetic flux density) and level 2 parameter B(electric potential), C(working gap) and level 3 parameter D(feed rate) are applied in the deburring process using EP-MAP hybrid process, it provides optimum result of EP-MAP hybrid deburring process.

Spreading Characteristics of a Liquid Droplet Impacting Upon the Inclined Micro-textured Surfaces (기울어진 미세 텍스쳐 표면에 충돌하는 단일 액적의 퍼짐 특성)

  • Shin, Dong-Hwan;Moon, Joo-Hyun;Lee, Seong-Hyuk
    • Journal of ILASS-Korea
    • /
    • v.16 no.2
    • /
    • pp.104-109
    • /
    • 2011
  • The present study investigated experimentally the spreading characteristics of a single liquid impinging on the inclined micro-textured aluminum (Al 6061) surfaces manufactured by using a micro computerized numerical control (${\mu}$-CNC) milling machine. The textured surfaces were composed of patterned micro-holes (diameter of $125\;{\mu}m$ and depth of $125\;{\mu}m$). In our experiment, the de-ionized (DI) water droplet of $4.3\;{\mu}l$ was impinged normally on the non-textured and textured surfaces at two different Weber numbers, and the droplet impinged on the inclined surfaces with different angles. A high speed camera was used to capture sequential digital images for measurement of the maximum spreading distance. It was found that for the textured surface, the measured apparent equilibrium contact angle (ECA) increased up to $105.8^{\circ}$, higher than the measured ECA of $87.6^{\circ}$ for the non-textured (bare) surface. In addition, it is conjectured that the spreading distance decreased because of a liquid penetration during droplet spreading through the holes, the increase in hydrophobicity, and viscous dissipation during impact process.

Evaluation of Machinability of Micro groove by Cutting Environments in High Speed Machining using Ball End Mill (소구경 미세홈 고속가공시 가공환경변화에 따른 가공성 평가)

  • 정연행;이태문;강명창;이득우;김정석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.32-37
    • /
    • 2002
  • High speed machining is one of most effective technologies to improve productivity. It can give great advantage for manufacture of die and Moulds. However, when the high speed machining of materials, especially in machining of micro groove, a severely thermal demage was generated on workpiece and tool. Generally, the cutting fluid is used to improve penetration, lubrication, and cooling effect. In order to rise the performance of lubrication, it contains extreme pressure agents (Cl, S, P). But the environment of work room go bad by those additive Therefore, the compressed chilly air with Oil mist system was developed to replace the conventional cutting fluid system. This paper carried out the tests to evaluate the machinability by the cutting environment in high speed micro groove machining of NAK80 (HRC40). Compressed chilly air with oil mist was ejected on the contact area between cutting edge and workpiece. The effectiveness of this developed compressed chilly air with oil mist system was evaluated in terms of tool life. The results showed that the tool life of carbide tool coated TiAIN with compressed chilly air mist cooling was much longer than with dry and flood coolant when cutting the material.

  • PDF

Spreading and Deposition Characteristics of a Water Droplet Impacting on Hydrophobic Textured Surfaces (소수성 텍스쳐 표면에 충돌한 단일 액적의 퍼짐 및 고착 특성)

  • Lee, Jae-Bong;Moon, Joo-Hyun;Lee, Seong-Hyuk
    • Journal of ILASS-Korea
    • /
    • v.17 no.1
    • /
    • pp.14-19
    • /
    • 2012
  • The present study conducts experimental investigation on spreading and deposition characteristics of a $4.3{\mu}l$ de-ionized (DI) water droplet impacting upon aluminum (Al 6061) flat and textured surfaces. The micro-textured surface consisted the micro-hole arrays (hole diameter: $125{\mu}m$, hole depth: $125{\mu}m$) fabricated by the conventional micro-computer numerical control (${\mu}$-CNC) milling machine process. We examined the surface effect of texture area fraction ${\varphi}_s$ ranging from 0 to 0.57 and impact velocity of droplet ranging from 0.40 m/s to 1.45 m/s on spreading and deposition characteristics from captured images. We used a high-speed camera to capture sequential images for investigate spreading characteristics and the image sensor to capture image of final equilibrium deposition droplet for analyze spreading diameter and contact angle. We found that the deposition droplet on textured surfaces have different wetting states. When the impact velocity is low, the non-wetting state partially exists, whereas over 0.64 m/s of impact velocity, totally wetting state is more prominent due to the increase kinetic energy of impinging droplet.

Fabrication and sintering of nano $TiN_x$ and its composites (Nano $TiN_x$와 그 복합체의 제조 및 소결)

  • Kim, Dong-Sik;Kim, Sung-Jin;Rahno, Khamidova;Park, Sung-Bum;Park, Seung-Sik;Lee, Hye-Jeong;Lee, Sang-Woo;Cho, Kyeong-Sik;Woo, Heung-Sik;Ahn, Joong-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.3
    • /
    • pp.101-105
    • /
    • 2006
  • We fabricated the nano $TiN_x$ by making of reaction between titanium powder and $Si_3N_4$ during planetary milling. The $TiN_x$ powder was sintered by spark plasma sintering machine after mixing with 50 wt% of titanium powder, and the sintered body was heat-treated at $850^{\circ}C$ in order to investigate its hardness property at the elevated temperature. We analyzed crystal structure by XRD. We observed the peaks of $TiN_{0.26}$ and TiN after 10 hours milling, and we observed TiN peak mainly after 20 hours milling. The reacted particle size distribution was investigated by FE-SEM. Increase of milling time, the size of reacted particles was decreased and the $10{\sim}20nm$ size of $TiN_x$ on the surface of titanium and $TiN_x$ was observed after 20 hours milling. The micro-Vickers hardness of mixed sintered body was about $1050kgf/mm^2$.

Microscopic precision evaluation of machined surface according to the variation of cooling and lubrication method (냉각.윤활방식 변화에 따른 가공면의 미시적 정밀도 평가)

  • Hwang I.O.;Kwon D.H.;Kang M.C.;Kim J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.225-226
    • /
    • 2006
  • As the technique of high-speed end-milling is widely adopted to machining field. The investigation for microscopic precision of workpiece is necessary for machinability evolution. The environmental pollution has become a big problem in industry and many researcher have investigated in order to preserve the environment. The environmentally conscious machining and technology have more important position in machining process. In the milling process, the cutting fluid has greatly bad influence on the environment. The damaged layer affect mold life and machine parts in machining. In this study, the cutting force, the surface roughness, micro hardness and residual stress is evaluated according to machining environment. Finally, it is obtained that the characteristics of damaged layer in environmentally conscious machining is better than that in conventional machining using cutting fluid.

  • PDF