• Title/Summary/Keyword: Micro Hollow cathode

Search Result 15, Processing Time 0.021 seconds

The Dielectric Barrier micro-hollow cathode structure and its upper pD limitation in alternative current driving for flat panel light source (광원을 위한 AC구동 유전체장벽 미세공음극 구조와 상한 pd 제한조건)

  • Park K. W.;Lee T. I.;Jegal J. P.;Baik H. K.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.45-47
    • /
    • 2005
  • The Dielectric Barrier micro-hollow cathode structure and it's upper pD limitation are investigated for determining of optimum hollow cathode discharge condition. In experiment, discharge is sustained by AC diriving and investigated gas is pure Xe. From Experiment, Optimum pD range is lower than 0.72 torr.cm at pure Xe and Cu cathode.

  • PDF

Atmospheric Pressure Micro Plasma Sources

  • Brown, Ian
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.5
    • /
    • pp.384-390
    • /
    • 2001
  • The hollow cathode discharge is a kind of plasma formation scheme in which plasma is formed inside a hollow structure, the cathode, with current to a nearby anode of arbitrary shape. In this scheme, electrons reflex radially within the hollow cathode, establishing an efficient ionization mechanism for gas within the cavity. An existence condition for the hollow cathode effect is that the electron mean-free-path for ionization is of the order of the cavity radius. Thus the size of this kind of plasma source must decrease as the gas pressure is increased. In fact, the hollow cathode effect can occur even at atmospheric pressure for cathode diameters of order 10-100 $\mu\textrm{m}$. That is, the "natural" operating pressure regime for a "micro hollow cathode discharge" is atmospheric pressure. This kind of plasma source has been the subject of increasing research activity in recent years. A number of geometric variants have been explored, and operational requirements and typical plasma parameters have been determined. Large arrays of individual tiny sources can be used to form large-area, atmospheric-pressure plasma sources. The simplicity of the method and the capability of operation without the need for the usual vacuum system and its associated limitations, provide a highly attractive option for new approaches to many different kinds of plasma applications, including plasma surface modification technologies. Here we review the background work that has been carried out in this new research field.

  • PDF

A Study on the TiC Coating Using Hollow Cathode Discharge Ion Plating (HCD이온플레이팅 방법을 이용한 zzTiC코팅에 관한 연구)

  • 김인철;서용운;황기웅
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.8
    • /
    • pp.875-882
    • /
    • 1992
  • Titanium carbide(TiC) films, known as having excellent characteristics of resistance to wear and corrosion, were deposited on SUS-304 sheets using HCD(Hollow Cathode Discharge) reactive ion plating with acetylene gas as the reactant gas. The characteristics of TiC films were examined by X-ray diffraction, micro-Vickers hardness tester, ${\alpha}$-step, SEM(Scanning Electron Spectroscopy), ESCA(Electron Spectroscopy for Chemical Analysis), and AES(Auger Electron Spectroscopy) and the results were discussed with regard to the changes of various deposition conditions(bias voltage, acetylene flow rate, temperature).

Shape Characteristics of Exhaust Plume of Dual-Stage Plasma Thruster using Direct-Current Micro-Hollow Cathode Discharge (직류 마이크로 할로우 음극 방전을 이용한 이단 마이크로 플라즈마 추력기의 배기 플룸의 형상 특성)

  • Ho, Thi Thanh Trang;Shin, Jichul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.3
    • /
    • pp.54-62
    • /
    • 2016
  • Micro plasma thruster (${\mu}PT$) was studied experimentally with a dual-stage micro-hollow cathode discharge (MHCD) plasma. Electrostatic-like acceleration exhibiting more directional and elongated exhaust plume was achieved by a dual layer MHCD at the total input power less than 10 W with argon flow rate of 40 sccm. V-I characteristic indicated that there was an optimal regime for dual-stage operation where the acceleration voltage across the second stage remained constant. Estimated exhaust plume length showed a similar trend to the analytic estimate of exhaust velocity which scales with an acceleration voltage. ${\mu}PT$ with multiple holes exhibited similar performance with single-hole thruster indicating that higher power loading is possible owing to decreased power through each hole. Boltzmann plot of atomic argon spectral lines showed average electron excitation temperature of about 2.6 eV (~30,170 K) in the exhaust plume.

TiN films by the HCD Ion plating (HCD법 이온플레이팅에 의한 TiN 박막제작)

  • Seo, Y.W.;Cho, S.M.;Kim, M.J.;Whang, K.W.
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.335-337
    • /
    • 1989
  • The Charcteristics of the HCD ion plating system for TiN coating was Investigated. 1-V curvet of the HCD ( hollow cathode discharge ), radiation temperatures of the Ta tube and the Ti pool and the electron density and the temperature of the generated plasma are shown. The preferred orientation and the micro-hardness of coatings performed by HCD process are studied.

  • PDF

Micro/nano Tribological and Water Wetting Characteristics of Ion Beam Treated PTFE Surfaces

  • Yoon, Eui-Sung;Oh, Hyun-Jin;Yang, Seung-Ho;Kong, Hosung
    • KSTLE International Journal
    • /
    • v.3 no.1
    • /
    • pp.12-16
    • /
    • 2002
  • Micro/nano tribological and water wetting characteristics of ion beam treated PTFE (polytetrafluoroethylene) surfaces were experimentally studied. The ion beam treatment was performed with a hollow cathode ion gun at different argon ion dose conditions in a vacuum chamber to modify the topography of PTFE surface. Micro/nano tribological characteristics, water wetting angles and roughness were measured with a micro tribe tester, SPM (scanning probe microscope), contact anglemeter and profilometer, respectively. Results showed that surface roughness increased with the argon ion dose. Water wetting angle of the ion beam treated samples increased with the ion dose, so the surface shows an ultra-hydrophobic nature. Micro-adhesion and micro-friction depend on the wetting characteristics of the PTFE samples. However, nano-tribological characteristics showed different results. The scale effect of surface topography on tribological characteristics was discussed. Also, the water wetting characteristics of modified PTFE samples were discussed in terms of the surface topographic characteristics.

Micro/Nano Adhesion and Friction Characteristics of PTFE Coating Film Deposited by IBAD Method (IBAD 방법으로 코팅된 PTFE 박막의 마이크로/나노 응착 및 마찰 특성)

  • 윤의성;오현진;한흥구;공호성;장경영
    • Tribology and Lubricants
    • /
    • v.20 no.5
    • /
    • pp.237-244
    • /
    • 2004
  • Micro/nano tribological characteristics of PTFE coating films were experimentally studied. PTFE (polytetrafluoroethylene) modified polyethylene and low molecular weight PTFE were used as a coating materials. These films were deposited on Si-wafer (100) by IBAD (ion beam assisted deposition) method. The Ar ion beam sputtering was performed to change the surface topography of films using a hollow cathode ion gun under different Ar ion dose conditions in a vacuum chamber. Micro/nano tribological characteristics, water wetting angles and roughness were measured with a micro tribotester, SPM (scanning probe microscope), contact anglemeter and profilometer, respectively. The durability of the films were measured with macro tribotester. Results showed that the PTFE coating surfaces were converted to hydrophobic. The water contact angle of coated surfaces and surface roughness increased with the coating thickness. Adhesion and friction in micro and nano scale were governed by magnitude of normal load in soft material such as PTFE films. As the increase of sputtering time on low molecular weight PTFE films, the surface roughness was increased and nano adhesion and friction were decreased. The nano tribological characteristics of surfaces are mainly improved by chemical modification such as PTFE coating and given a synergy effect by the physical modification such as topographic modification.

Effect of surface topography on wetting angle and micro/nano-tribological characteristics (표면형상이 젖음각과 마이크로/나노 트라이볼로지 특성에 미치는 영향)

  • Yoon, Eui-Sung;Oh, Hyun-Jin;Yang, Seung-Ho;Kong, Ho-Sung
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.25-33
    • /
    • 2002
  • Effect of surface topography on the water wetting nature and micro/nano tribological characteristics of Si-wafer and PTFE was experimentally studied. The ion beam treatment was performed with a hollow cathode ion gun in different argon don dose conditions in a vacuum chamber to change the surface topography, Micro/nano tribological characteristics, water wetting angles and roughness were measured with a micro tribo tester, SPM (scanning prove microscope), contact anglemeter and profilometer, respectively. Results showed that surface roughness increased with the argon ion dose. The water wetting angle of tile ion beam treated samples also increased with the ion dose. Results also showed that micro-adhesion and micro-friction depend on the wetting characteristics of the PTFE samples. However, nano-triboloSical characteristics showed little dependence on the wetting angles. The water wetting characteristics of modified PTFE samples were discussed in terms of the surface topographic characteristics.

  • PDF

Novel Water-Soluble Polyfluorenes as an Interfacial layer leading to Cathodes-Independent High Performance of Organic Solar Cells

  • Oh, Seung-Hwan;Shim, Hee-Sang;Park, Dong-Won;Jeong, Yon-Kil;Lee, Jae-Kwang;Moon, Seung-Hyeon;Kim, Dong-Yu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.394-394
    • /
    • 2009
  • Water solubility of conjugated polymers may offer many applications. Potential applications of water-soluble conjugated polymers include the polymer light-emitting diode and new materials for nano and micro hollow-capsules, and bio- or chemo-sensors. We synthesized neutral polyfluorenes containing bromo-alkyl groups by the palladium catalyzed Suzuki coupling reaction. Bromo-alkyl side groups in neutral polyfluorenes were quaternized by tri-methyl amine solution. The electrochemical and optical properties of water-soluble conjugated polymers are discussed. This novel synthesized water-soluble conjugated polymers were used as a interfacial dipole layer between active layer and metal cathode in polymer solar cell for enhancement of open-circuit voltage (Voc), which is one of the most critical factors in determining device characteristics. We also investigated the device performance of polymer solar cell with different metal cathode such as Al, Ag, Au and Cu. In polymer solar cell, novel cationic water-soluble conjugated polymers were inserted between active layer and high-work function cathode (Al, Ag, Au and Cu).

  • PDF