• Title/Summary/Keyword: Micro Former

Search Result 97, Processing Time 0.029 seconds

A Study on Laser Interferometer Development for Micro Displacement Measurement in Micro Former (마이크로 성형기에서 미세 변위 측정을 위한 레이저 간섭계 개발에 관한 연구)

  • 최재원;김대현;최경현;이석희;김승수;나경환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1195-1198
    • /
    • 2003
  • Micro former has been known as a useful tool for machining micro parts. It makes micro holes automatically with punches, a hole-shape die and material by rotation of crank shaft synchronously. Micro displacement in micro forming affects on the performance of machining because micro forming size is similar with its mechanical displacement. Therefore, the measurement of this micro displacement is essential to be guaranteed to obtain high forming precision in the whole machine as well as its devices. This paper addresses the development of a laser interferometer to measure micro displacement for a micro former. The laser interferometer is able to measure micro displacement during a few micro seconds with non-contact. For the experiment, a laser probe is installed on the optical table with optical devices and a micro displacement generating device. The velocity decoding board is also added to calculate doppler shift frequency directly. Finally simple experiments are conducted to confirm its functional operation.

  • PDF

Structural analysis of the Micro-Former based on results from the forming analysis for milli components (밀리부품 성형해석을 통한 Micro-Former의 거동해석)

  • Yoon J.H.;Huh H.;Kim S.S.;Choi T.H.;Na G.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.118-121
    • /
    • 2004
  • Manufacturing process for milli components has recently gained researcher's focus with the increasing tendency toward highly integrated and micro-scaled parts for electronic devices. The milli-components cannot be formed by the conventional manufacturing process since the parts require higher dimensional accuracy than the conventional ones. In order to enhance the forming accuracy and productivity, various forming procedures proposed and studied by many researchers. In this paper, forming analysis of milli-components has been studied with a new micro-former. In modeling of progressive dies, multi-stage forming sequence has been analyzed with finite element analysis by LS-DYNA3D. The analysis proposes the sequential die and part shapes with the corresponding punch force and dimensional accuracy. The analysis also considers the effect of elastic dies on the dimensional accuracy of the formed parts. The analysis result demonstrates that the elastic analysis in the milli-forming process is indispensable fur accurate forming analysis. The analysis procedure in the paper will provide good information in design of a new micro-former and milli-component.

  • PDF

미세 변위 측정기 개발에 관한 연구

  • 김대현;최재원;최경현;이석희;김승수;나경환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.124-124
    • /
    • 2004
  • 최근 MEMS공학의 발전으로 미소 가공물과 그 미소 가공물을 가공하는 공작기계의 발전이 두드러지고 있다. 마이크로 성형기는 이러한 미소 가공물을 만드는 공작기계들 중의 하나이다. 마이크로 성형기(micro former)는 마이크로 홀(micro holl)을 만드는 성형기로써 크랭크 축의 회전에 의한 펀치의 직선 운동으로 마이크로 홀을 뚫는 성형기이다. 마이크로 홀을 성형할 때에는 상하, 좌우의 미세한 변위가 생길 수 있다.(중략)

  • PDF

Forging Simulation of a Micro-Former Forging Process of an ABS Part (ABS 용 부품의 마이크로 포머단조공정 시뮬레이션)

  • Choi, I.S.;Yoo, S.W.;Park, S.G.;Yoon, D.J.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.165-169
    • /
    • 2007
  • In this study, the factors that have strong relationship with size effects on forging simulation are investigated and then a dimensionless concept is implemented into the forging simulator. The approach is applied to simulating a micro former forging process of which sequence involves a piercing process to make a hole of 0.7mm diameter of the product whose maximum diameter is 3mm. The simulated results are discussed to reveal the size effect in forging simulation.

  • PDF

Multi-stage forming analysis of milli component for improvement of forming accuracy (밀리부품 성형 정밀도 향상을 위한 다단계 미세성형 해석)

  • Yoon, J.H.;Huh, H.;Kim, S.S.;Choi, T.H.;Na, G.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.97-100
    • /
    • 2003
  • Globally, the various machine components, as in electronics and communications, are demanded to being high-performance and micro-scale with abrupt development of the fields of computers, mobile communications. As this current tendency, production of the parts that must have high accuracy, so called milli-structure, are accomplished by the method of top-down, differently as in the techniques of MEMS, NANO. But, in the case of milli-structure, production procedure is highly costs, difficult and demands more accurate dimension than the conservative forming, processing technique. In this paper, forming analysis of the micro-former as the milli-structure are performed and then calculate the punch force etc. This information calculated is applied to decide the forming capacity of micro-former and design the process of forming stage, dimension of dies in another forming bodies. And, for the better precise forming analysis, elasto-plastic analysis is to be performed, then the consideration about effect of elastic recovery when punch and die are unloaded, have to be discussed in change of dimensions.

  • PDF

Multi-Stage Forming Analysis of a Milli-Component for Improvement of Forming Accuracy (밀리부품의 정밀도 향상을 위한 다단계 성형 및 금형 해석)

  • Yoon, J.H.;Huh, H.;Kim, S.S.;Na, G.H.;Park, H.J.;Choi, T.H.
    • Transactions of Materials Processing
    • /
    • v.13 no.5
    • /
    • pp.429-434
    • /
    • 2004
  • Manufacturing process for milli components has recently gained researcher's focus with the increasing tendency toward highly integrated and micro-scaled parts for electronic devices. The milli-components need more precise manufacturing process than the conventional manufacturing process since the parts require higher dimensional accuracy than the conventional ones. In order to enhance the forming accuracy and productivity, various forming procedures proposed and studied by many researchers. In this paper, forming analysis of milli-components has been studied with a new micro-former. In modeling of progressive dies, multi-stage forming sequence has been analyzed with finite element analysis by LS-DYNA3D. The analysis proposes the sequential die and part shapes with the corresponding punch force and dimensional accuracy. The analysis also considers the effect of elastic dies on the dimensional accuracy of the formed parts. The analysis result demonstrates that the elastic analysis in the milli-forming process is indispensable for accurate forming analysis. The analysis procedure in the paper will provide good information in design of a new micro-former and milli-component

A Study on the Novel Micro Mixer for the Application of LOC (LOC적용을 위한 새로운 마이크로믹서의 연구)

  • Choi, Bum-Kyoo;Lee, Seung-Hyeon;Kang, Ho-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.6
    • /
    • pp.143-149
    • /
    • 2008
  • This paper presents the results of the study on the novel micro mixer. Existing micro mixer is classified as active mixing and passive mixing by the mixing principles. Both mixing principles have problems. For solving these problems, this research has developed the novel micro mixers based on a totally different principle compared with former mixers. They not only have a simpler structure than former ones but also are able to achieve high mixing efficiency in spite of low power consumption due to using Lorentz Force. In addition, they are designed to increase the efficiency of mixing by changing the rotating direction of fluid with a polar switching circuit. Driving forces of the mixer are Lorentz force and a moving force of fluid due to electrophoresis. Because the efficiency of mixer is affected by electrode shape, several models have been made. The computer simulation has been made to estimate the efficiency of each mixer.

Improvement of a Low Cost MEMS-based GPS/INS, Micro-GAIA

  • Fujiwara, Takeshi;Tsujii, Toshiaki;Tomita, Hiroshi;Harigae, Masatoshi
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.265-270
    • /
    • 2006
  • Recently, inertial sensors like gyros and accelerometers have been quite miniaturized by Micro Electro-Mechanical Systems (MEMS) technology. JAXA is developing a MEM-based GPS/INS hybrid navigation system named Micro-GAIA. The navigation performance of Micro-GAIA was evaluated through off-line analysis by using flight test data. The estimation errors of the roll, pitch, and azimuth were $0.03^{\circ}$, $0.05^{\circ}$, $0.05^{\circ}$ $(1{\sigma})$, respectively. he horizontal position errors after 60-second GPS outages were reduced to 25 m CEP. The attitude errors and position errors are nearly half of ones reported previously[2]. Furthermore, using the adaptive Kalman filters, the robustness against the uncertainty of the measurement noise was improved. Comparing the innovation-based and residual-based adaptive Kalman filters, it was confirmed that the latter is robuster than the former.

  • PDF

A Study on Ozone Micro Bubble Effects for Solar Cell Wafer Cleaning (신개념 태양전지 세정용 오존마이크로 버블에 관한 연구)

  • Yoon, Jong-Kuk;Koo, Kyung-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.94-98
    • /
    • 2012
  • The behavior of ozone micro bubble cleaning system was investigated to evaluate the solution as a new method of solar cell wafer cleaning in comparison with former conventional RCA cleaning. We have developed the ozone dissolution system in the ozonated water for more efficient cleaning conditions. The optimized cleaning conditions for solar cell wafer process were 10 ppm of ozone concentration and 12 minutes in cleaning periods, respectively. We have confirmed the cleaning reliability and cell efficiencies after ozone micro bubble cleaning. Using this new cleaning technology, it was possible to obtain higher efficiency, higher productivity, and fast tact time for applying cleaning in the fields on bare ingot wafer, LED wafers as well as the solar cell wafer.

Rejection Properties of Hydrophilic Solutes and Micro Organic Pollutants with a Hollow Fiber NF Membrane (중공사 나노여과 막분리를 이용한 친수성 용질과 미량 유기 오염물질의 배제 특성)

  • Jung, Yong-Jun;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.2
    • /
    • pp.205-210
    • /
    • 2005
  • There has been a growing interest in NF membrane for drinking water treatment, because it can remove simultaneously both hardness and hazardous micro pollutants such as pesticides and THM precursors. In this work, a hollow fiber NF membrane known as a composite membrane was employed for the rejection properties of both hydrophilic solutes and micro organic pollutants, where the former was used to evaluate the molecular sieving effect of this membrane and the latter was employed for the investigation of solute-membrane interaction as hydrophobic materials. This membrane effectively rejected the hydrophilic solutes and the permeation of them was mainly controlled by the molecular sieving effects such as molecular weight and molecular width. In the case of all micro organic pollutants, the rejections were varied from 42.2% for Simazine to 91.6% for Malathion, and the parameters related to the steric hindrance could significantly play an important role in the rejection. In the batch type adsorption experiments, all micro organic pollutants were entrapped mildly on the membrane in spite of lower degree compared with that of aromatic compounds, and they were correlated with log K.