• Title/Summary/Keyword: Micro Dimension Control

Search Result 23, Processing Time 0.034 seconds

The Study of Error Compensation for Repeatability Improvement of Precision Positioning System

  • Lee, Woogeun;Changsoo Han;Park, Hyeunseok;Lee, Kyeyoung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.66.6-66
    • /
    • 2001
  • In this paper, we studied the error compensation using an error budget method for repeatability improvement of the precision positioning system. The precision positioning system is developed for micro-pressing machine. We performed the force and displacement analysis about parts of the system. Proposed system determines the position and orientation of the materials manufactured by micro-pressing machine. It is consisted of x-y-z linear stages setting the position, and the gripper system setting the orientation. We executed kinematic and dynamic modeling of the whole precision positioning system. By generalizing the design variables, precision positioning system has the flexibility of material dimension. As we tried an error compensation using ...

  • PDF

Study of 3 dimensional wide area continuous laser micro patterning (3차원 대면적 연속 마이크로 레이저 패터닝을 위한 연구)

  • Kim, Kyunghan;Sohn, Hyonkee;Lee, Jaehoon
    • Laser Solutions
    • /
    • v.18 no.4
    • /
    • pp.1-5
    • /
    • 2015
  • For continuous laser micro patterning on three-dimensional free form surface, innovative laser system is developed. The two axis galvanometer is combined with the dynamic focusing unit to increase optical distance. Also, it is synchronized with the 3 axis mechanical system. To determine laser machining sequence, laser CAM system is developed. It can make possible of 3D surface micro patterning under $25{\mu}m$ pattern width. The uniformity of pattern width is about 2.8% and it is validated that focal plane is well conserved by the dynamic focusing unit. Velocity and positional information of 1 axis is stage is fed to the scanner control board by the encoder signal and it makes possible real time synchronization. With this system, possible patterning volume is enlarged from $40{\times}40mm^2$ to $40{\times}120{\times}30mm^3$.

Relationship of box counting of fractured rock mass with Hoek-Brown parameters using particle flow simulation

  • Ning, Jianguo;Liu, Xuesheng;Tan, Yunliang;Wang, Jun;Tian, Chenglin
    • Geomechanics and Engineering
    • /
    • v.9 no.5
    • /
    • pp.619-629
    • /
    • 2015
  • Influenced by various mining activities, fractures in rock masses have different densities, set numbers and lengths, which induce different mechanical properties and failure modes of rock masses. Therefore, precisely expressing the failure criterion of the fractured rock influenced by coal mining is significant for the support design, safety assessment and disaster prevention of underground mining engineering subjected to multiple mining activities. By adopting PFC2D particle flow simulation software, this study investigated the propagation and fractal evolution laws of the micro cracks occurring in two typical kinds of rocks under uniaxial compressive condition. Furthermore, it calculated compressive strengths of the rocks with different confining pressures and box-counting dimensions. Moreover, the quantitative relation between the box-counting dimension of the rocks and the empirical parameters m and s in Hoek-Brown strength criterion was established. Results showed that with the increase of the strain, the box-counting dimension of the rocks first increased slowly at the beginning and then exhibited an exponential increase approximately. In the case of small strains of same value, the box-counting dimensions of hard rocks were smaller than those of weak rocks, while the former increased rapidly and were larger than the latter under large strain. The results also presented that there was a negative correlation between the parameters m and s in Hoek-Brown strength criterion and the box-counting dimension of the rocks suffering from variable mining activities. In other words, as the box-counting dimensions increased, the parameters m and s decreased linearly, and their relationship could be described using first order polynomial function.

Fabrication, Estimation and Trypsin Digestion Experiment of the Thermally Isolated Micro Teactor for Bio-chemical Reaction

  • Sim, Tae-Seok;Kim, Dae-Weon;Kim, Eun-Mi;Joo, Hwang-Soo;Lee, Kook-Nyung;Kim, Byung-Gee;Kim, Yong-Hyup;Kim, Yong-Kweon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.3
    • /
    • pp.149-158
    • /
    • 2005
  • This paper describes design, fabrication, and application of the silicon based temperature controllable micro reactor. In order to achieve fast temperature variation and low energy consumption, reaction chamber of the micro reactor was thermally isolated by etching the highly conductive silicon around the reaction chamber. Compared with the model not having thermally isolated structure, the thermally isolated micro reactor showed enhanced thermal performances such as fast temperature variation and low energy consumption. The performance enhancements of the micro reactor due to etched holes were verified by thermal experiment and numerical analysis. Regarding to 42 percents reduction of the thermal mass achieved by the etched holes, approximately 4 times faster thermal variation and 5 times smaller energy consumption were acquired. The total size of the fabricated micro reactor was $37{\times}30{\times}1mm^{3}$. Microchannel and reaction chamber were formed on the silicon substrate. The openings of channel and chamber were covered by the glass substrate. The Pt electrodes for heater and sensor are fabricated on the backside of silicon substrate below the reaction chamber. The dimension of channel cross section was $200{\times}100{\mu}m^{2}$. The volume of reaction chamber was $4{\mu}l$. The temperature of the micro reactor was controlled and measured simultaneously with NI DAQ PCI-MIO-16E-l board and LabVIEW program. Finally, the fabricated micro reactor and the temperature control system were applied to the thermal denaturation and the trypsin digestion of protein. BSA(bovine serum albumin) was chosen for the test sample. It was successfully shown that BSA was successfully denatured at $75^{\circ}C$ for 1 min and digested by trypsin at $37^{\circ}C$ for 10 min.

Profile Measurements of Micro-Machined Surfaces by Scanning Tunneling Microscopy (터널링효과를 이용한 초미세 가공표면의 형상측정)

  • Jung, Seung-Bae;Lee, Young-Ho;Kim, Seung-Woo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1731-1739
    • /
    • 1993
  • An application of Scanning Tunneling Microscopy(STM) is investigated for the measurement of 3-dimensional profiles of the macro-machined patterns of which critical dimensions lie in the range of submicrometers. Special emphasis of this investigation is given to extending the measuring ranges of STM upto the order of several micrometers while maintaining superb nanometer measuring resolution. This is accomplished by correcting hysteresis effects of piezoelectric actuators by using non-linear compensation models. Detailed aspects of design and control of a prototype measurement system are described with some actual measuring examples in which fine It patterns can successfully be traced with a resolution of 1 nanometer over a surface range of $4{\times}2$ micrometers.

Fabrication of Electrostatically Actuated Nano Tweezers Using FIB(Focused Ion Beam) (집속이온빔 장치를 이용한 정전기 구동 나노트위저의 제작)

  • Chang Ji-Young;Kim Jong-Baeg;Min B.K.;Lee S.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.495-496
    • /
    • 2006
  • Electrostatically actuated nanoscale tweezers are fabricated on micro processed electrodes using FIB-CVD. Heavily doped electrode works as interconnection platform for controlling nanoscale devices. Short bent pillars are deposited to control the gap distance of main tweezers fabricated on bent ones. Two types of tweezers which have different gap distances are fabricated and tweezing motion was successfully demonstrated. The threshold voltages at snap-down of the pillars are dependent on the initial gap distance of the unactuated pillars, and the measured values were 93V for 3.6um and 30V for 2.2um. The dimension of nano tweezers and initial gap distances are controllable as demonstrated and we expect more complicated 3-dimensional shapes are also possible.

  • PDF

RFID Tag Protection using Face Feature

  • Park, Sung-Hyun;Rhee, Sang-Burm
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.2 s.19
    • /
    • pp.59-63
    • /
    • 2007
  • Radio Frequency Identification (RFID) is a common term for technologies using micro chips that are able to communicate over short-range radio and that can be used for identifying physical objects. RFID technology already has several application areas and more are being envisioned all the time. While it has the potential of becoming a really ubiquitous part of the information society over time, there are many security and privacy concerns related to RFID that need to be solved. This paper proposes a method which could protect private information and ensure RFID's identification effectively storing face feature information on RFID tag. This method improved linear discriminant analysis has reduced the dimension of feature information which has large size of data. Therefore, face feature information can be stored in small memory field of RFID tag. The proposed algorithm in comparison with other previous methods shows better stability and elevated detection rate and also can be applied to the entrance control management system, digital identification card and others.

  • PDF

Real-time Monitoring System for Rotating Machinery with IoT-based Cloud Platform (회전기계류 상태 실시간 진단을 위한 IoT 기반 클라우드 플랫폼 개발)

  • Jeong, Haedong;Kim, Suhyun;Woo, Sunhee;Kim, Songhyun;Lee, Seungchul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.6
    • /
    • pp.517-524
    • /
    • 2017
  • The objective of this research is to improve the efficiency of data collection from many machine components on smart factory floors using IoT(Internet of things) techniques and cloud platform, and to make it easy to update outdated diagnostic schemes through online deployment methods from cloud resources. The short-term analysis is implemented by a micro-controller, and it includes machine-learning algorithms for inferring snapshot information of the machine components. For long-term analysis, time-series and high-dimension data are used for root cause analysis by combining a cloud platform and multivariate analysis techniques. The diagnostic results are visualized in a web-based display dashboard for an unconstrained user access. The implementation is demonstrated to identify its performance in data acquisition and analysis for rotating machinery.

Fabrication of PDMS Lens Using Photolithography and Water Droplet Mold (사진식각공정과 물방울 형틀을 이용한 PDMS 렌즈 제작)

  • Kim, Jin Young;Sung, Jungwoo;Cho, Seong J.;Kim, Chulhong;Lim, Geunbae
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.352-356
    • /
    • 2013
  • We developed a novel fabrication method of polydimethylsioxane (PDMS) lens, which can easily control the shapes of the lens using soft lithography with common photolithography and water droplet molding. A mold for PDMS lens was prepared by patterning of hydrophobic photoresist on the hydrophilic substrate and dispensing small water droplets onto the predefined hydrophilic patterns. The size of patterns determined the dimension of the lens and the dispensed volume of the water droplet decided the radius of curvature of the PDMS lens independently. The water droplet with photoresist pattern played a robustly fixed mold for lens due to difference in wettability. The radius of curvature could be calculated theoretically because the water droplets could approximate spherical cap on the substrate. Finally, concave and convex PDMS lenses which could reduce or magnify optically were fabricated by curing of PDMS on the prepared mold. The measured radii of the fabricated PDMS lenses were well matched with the estimated values. We believe that our simple and efficient fabrication method can be adopted to PDMS microlens and extended to micro optical device, lab on a chip, and sensor technology.

A Experimental Study on Effluence Characteristic of the Rainfall in the IRMA Green Roof System of KICT (역지붕 녹화옥상시스템[KICT-GRS2004]의 우수유출 특성에 관한 실험적 연구)

  • Jang, Dae-hee;Kim, Hyeon-soo;Lee, Keon-ho;Moon, Soo-young
    • KIEAE Journal
    • /
    • v.5 no.2
    • /
    • pp.11-18
    • /
    • 2005
  • The Purpose of this study is development and analysis of Effluence Characteristic of the Rainfall in the IRMA Green Roof System(developed in KICT) Plus 50 program is an internal research project at KICT(Korean Institute of Construction Technology) which has it as an object ; to lengthen the building's life 50-year or more and reduce energy conception 50% than present. Green roof system is one of the most important theme in the Plus 50 program. Generally, a Green Roof System has a positive effect on the thermal conductivity in winter, the micro cooling effect on building and city by evaporation in summer, the flood-control effect by runoff-reduction or the treated rainwater-quality of green roof system and so on. However, inspection of the physical effect of green roof system does not consider in Korea. Above all, long-term monitoring and a whole observation of green roof system is needed to probate the effect. So a new experimental method could be tried in this research, which is never attempted in Korea. The measurement by a bucket with a great volume, 1L, gives a new dimension of measuring green roof effect to measure the permanent running flood from a wide roof. This offers a reasonable result on a long-term measuring of a running water. Additionally, the thermal behavior of the IRMA(Insulated Roof Membrane Assembly), known in the western europe as a reasonable solution at green roof system by economical benefits and easy construction, would be experimented.