• Title/Summary/Keyword: Micro Cell

Search Result 1,232, Processing Time 0.044 seconds

Numerical Study on the Sub-Voxel Tracking Using Micro-Beads in a 3.0 T MRI (3.0 T MRI 환경에서 마이크로비드를 이용한 서브복셀 추적에 관한 수치해석적 연구)

  • Han, Byung-Hee;Lee, Soo-Yeol
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.1
    • /
    • pp.102-107
    • /
    • 2007
  • In molecular imaging studies via magnetic resonance imaging, in vivo cell tracking is an important issue for the observation of cell therapy or disease behavior. High resolution imaging and longitudinal study are necessary to track the cell movement. Since the field inhomogeneity extends over several voxels, we have performed the numerical analysis using the sub-voxel method dividing a voxel of MR image into several elements and the information about the field inhomogeneity distribution around the micro-beads. We imbedded ferrite-composite micro-beads with the size of $20-150{\mu}m$ in the subject substituted for cells to induce local field distortion. In the phantom imaging with the isotropic voxel size of $200{\mu}m^3$, we could confirm the feasibility of sub-voxel tracking in a 3.0 T MRI.

Fabrication of YSZ-based Micro Tubular SOFC Single Cell using Electrophoretic Deposition Process

  • Yu, Seung-Min;Lee, Ki-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.315-319
    • /
    • 2015
  • Yttria-stabilized zirconia (YSZ)-based micro tubular SOFC single cells were fabricated by electrophoretic deposition (EPD) process. Stable slurries for the EPD process were prepared by adding phosphate ester (PE) as a dispersant in order to control the pH, conductivity, and zeta-potential. NiO-YSZ anode support, NiO-YSZ anode functional layer (AFL), and YSZ electrolyte were consecutively deposited on a graphite rod using the EPD process; materials were then co-sintered at $1400^{\circ}C$ for 4 h. The thickness of the deposited layer increased with increasing of the applied voltage and the deposition time. A YSZ-based micro tubular single cell fabricated by the EPD process exhibited a maximum power density of $0.3W/cm^2$ at $750^{\circ}C$.

Two Step Surface Texturing of Silicon Wafers using Micro Blaster (마이크로 블라스터를 이용한 실리콘 웨이퍼의 2단계 표면 텍스쳐링)

  • Cho, Chan-Seob;Jung, Sang-Hoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.3
    • /
    • pp.5-9
    • /
    • 2010
  • Recently, the important issues of solar cell are low cost and high efficiency. Making low cost and high efficiency solar cell, there are many effects to development of inexpensive wafer, simplify process and improve optical, electrical properties. In this the study, the 2 step texturing method using micro blaster was developed to decrease reflection of incident lights. Air bridge electrode structure is suggested to expand the effective surface area and decrease the series resistance of finger electrode. The effects of 1 step texturing and 2 step texturing by micro blaster are compared. Reflectance of 1 step and 2 step texturing are measured 28.7% and 25.5%, respectively. The reflectance of 2 step texturing sample is lower about 3.2% than 1 step textured sample.

Fabrication of Ozone Bubble Cleaning System and its Application to Clean Silicon Wafers of a Solar Cell

  • Yoon, J.K.;Lee, Sang Heon
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.295-298
    • /
    • 2015
  • Ozone micro-bubble cleaning system was designed, and made to develop a unique technique to clean wafers by using ozone micro-bubbles. The ozone micro-bubble cleaning system consisted of loading, cleaning, rinsing, drying and un-loading zones, respectively. In case of the cleaning the silicon wafers of a solar cell, more than 99 % of cleaning efficiency was obtained by dipping the wafers at 10 ppm of ozone for 10 minutes. Both of long cleaning time and high ozone concentration in the wet-solution with ozone micro-bubbles reduced cleaning efficiency because of the re-sorption of debris. The cleaning technique by ozone micro-bubbles can be also applied to various wafers for an ingot and LED as an eco-friendly method.

Vertical Alignment of Zinc Oxide Micro Rod with Array of 2-Dimensions (2차원 배열구조를 갖는 ZnO 마이크로 막대 구조체의 수직정렬)

  • Lee, Yuk-Kyoo;Jeon, Chan-Wook;Nam, Hyo-Duk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.459-460
    • /
    • 2008
  • Zinc oxide micro rods were fabricated using as chemical bath deposition ok photolithography. Vertically aligned Zinc Oxide rod array as grown by chemical bath deposition method on Zinc Oxide template layer. The ZnO template layer was deposited on glass and the pattering was made by standard photolithography technique. The selective growth of ZnO micro rods were achieved with the masked ZnO template layer substrate. The fabricated ZnO micro rods were found to be single crystalline and have grown along hexagonal c-axis direction of (0002) which is same as the preferred growth orientation of ZnO template layer. The ZnO micro-rod array structure was implemented as a window layer in Cu(InGa)Se2 solar cell and its effect on photovoltaic efficiency was examined.

  • PDF

The Effects of an RF Plasma and Electric Fields on the Death of G361 Melanoma Cells (RF 플라즈마 및 전기장의 흑색종 (G361 melanoma) 세포에 대한 사멸 효과)

  • Shon, Chae-Hwa;Kim, Gyoo-Cheon;Lee, Hae-June
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.11
    • /
    • pp.1972-1977
    • /
    • 2007
  • Micro plasma has been recently studied to investigate the effects on various cells. We study a micro-plasma produced by a plasma needle that is operated with RF power and its effects on G361 melanoma cells. The micro plasma size ranges from sub-mm to several mm at a few watts of RF power. For the bio-medical treatment, low-temperature plasma is obtained and gas temperature is controlled within several tens of degrees $(^{\circ}C)$ in order not to disturb cell activities. Elementary spectroscopic studies to obtain plasma characteristics are presented for Ar and He plasma with different frequencies of RF power. Also the preliminary results of the micro plasma effects on G361 melanoma cells are presented. It was observed that the irradiation of micro plasma induces cell death through the deprivation of tyrosine phosphorylation in the G361 cells.

Research on the Apoptotic Death of Melanoma by the irradiation of Micro Plasma (마이크로 플라즈마를 이용한 피부암 세포의 자연사 유도 연구)

  • Shon, C.H.;Kim, G.C.;Lee, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.220-221
    • /
    • 2007
  • Micro plasma has been recently studied to investigate the effects on various cells. We study a micro-plasma produced by a plasma needle that is operated with RF power and its effects on G361 melanoma cells. The micro plasma size ranges from sub-mm to several mm at a few watts of RF power. For the bio-medical treatment, low-temperature plasma is obtained and gas temperature is controlled within several tens of degrees $(^{\circ}C)$ in order not to disturb cell activities. Elementary spectroscopic studies to obtain plasma characteristics are presented for Ar and He plasma with different frequencies of RF power. Also the preliminary results of the micro plasma effects on G361 melanoma cells are presented. It was observed that the irradiation of micro plasma induces cell death through the deprivation of tyrosine phosphorylation in the G361 cells.

  • PDF

Operational Characteristic Analysis of DC Micro-grid with Detail Model of Distributed Generation (분산전원 상세모델을 적용한 DC Micro-grid의 동작특성 분석)

  • Lee, Ji-Heon;Kwon, Gi-Hyun;Han, Byung-Moon;Cha, Han-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2175-2184
    • /
    • 2009
  • This paper describes operational analysis results of the DC micro-grid using detailed model of distributed generation. Detailed model of wind power generation, photo-voltaic generation, fuel-cell generation was implemented with the user-defined model of PSCAD/EMTDC software that is coded with C-language. The operation analysis was carried out using PSCAD/EMTDC software, in which the power circuit is implemented by built-in model and the controller is modelled by user-defined model that is also coded with C-language. Various simulation results confirm that the DC micro-grid can operate without any problem in both the interconnected mode and the islanded mode. The operation analysis result confirms that the DC micro-grid make it feasible to provide power to the load stably. And it can be utilize to develop the actual system design and building.

Performance Analysis of Photonic Crystal Enhanced Micro-Combustor Thermophotovoltaic System for Drone Application (광결정 표면을 이용한 드론용 마이크로 연소기 열광전 에너지변환시스템의 성능해석)

  • Lee, Junghun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.309-316
    • /
    • 2021
  • In this paper, the electrical power output of the micro-combustor thermophotovoltiac(TPV) system was analyzed. The system consists of a micro-combustor, photonic crystals(PhCs), and photovoltaic cells(PV cells). The system has a micro-combustor that can achieve over 1,000 K surface temperature by consuming 2.5 g/h hydrogen fuel. Also, this system incorporates current state-of-the-art PhCs surfaces(2D Ta PhCs and Tandem Filter) to increase electrical power output. In addition, InGaAsSb PV cell, which bandgap is 0.55 eV, was applied to convert a wide range of radiative energy. The performance analysis shows that a single micro-combustor TPV system can produce 0.4 W ~ 27.7 W electrical power with the temperature change of emitter(900 K ~ 1,500 K) and PV cell(250 K ~ 400 K).