• Title/Summary/Keyword: Micro Assembly

Search Result 189, Processing Time 0.031 seconds

Research Trends of Microfactory in Some Countries and Measurement for Korea (주요국의 마이크로팩토리 연구현황과 우리의 대응방향)

  • 박장선;배영문;박주형
    • Journal of Korea Technology Innovation Society
    • /
    • v.6 no.4
    • /
    • pp.429-446
    • /
    • 2003
  • The status of microfactory or microfactory-related research in some advanced countries are investigated. Under the financial support of government, Japan has accomplished the Microfactory Project, the United States has pursued the Micro/Meso mMf project, and European countries have been studying micro assembly systems. In Korea, several universities and some large manufacturers have participated in the development of micro-components or micrcrdevices based on MEMS technology since the late 1990's. Microfactory is a process which achieves an integrated micro-manufacturing system in a production system, which is followed by the steps of micro-technology of machine parts based on micro-system technology. In addition, this process is a new concept of manufacturing system that renovates the existing manufacturing system It is sure that the research of micro- manufacturing technology must lead to nano-technology in the near future, with intensive financial supports of government for this technology.

  • PDF

A Micro-robotic Platform for Micro/nano Assembly: Development of a Compact Vision-based 3 DOF Absolute Position Sensor (마이크로/나노 핸들링을 위한 마이크로 로보틱 플랫폼: 비전 기반 3자유도 절대위치센서 개발)

  • Lee, Jae-Ha;Breguet, Jean Marc;Clavel, Reymond;Yang, Seung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.1
    • /
    • pp.125-133
    • /
    • 2010
  • A versatile micro-robotic platform for micro/nano scale assembly has been demanded in a variety of application areas such as micro-biology and nanotechnology. In the near future, a flexible and compact platform could be effectively used in a scanning electron microscope chamber. We are developing a platform that consists of miniature mobile robots and a compact positioning stage with multi degree-of-freedom. This paper presents the design and the implementation of a low-cost and compact multi degree of freedom position sensor that is capable of measuring absolute translational and rotational displacement. The proposed sensor is implemented by using a CMOS type image sensor and a target with specific hole patterns. Experimental design based on statistics was applied to finding optimal design of the target. Efficient algorithms for image processing and absolute position decoding are discussed. Simple calibration to eliminate the influence of inaccuracy of the fabricated target on the measuring performance also presented. The developed sensor was characterized by using a laser interferometer. It can be concluded that the sensor system has submicron resolution and accuracy of ${\pm}4{\mu}m$ over full travel range. The proposed vision-based sensor is cost-effective and used as a compact feedback device for implementation of a micro robotic platform.

Development of Evaluation System and Program for the Performance of Micro Optical Filters (미소 광필터 성능평가 시스템 및 프로그램 개발)

  • Park, Han-Su;Seo, Yeong-Ho;Choe, Du-Seon;Je, Tae-Jin;Hwang, Gyeong-Hyeon
    • 연구논문집
    • /
    • s.33
    • /
    • pp.111-122
    • /
    • 2003
  • The automatic assembly system of micro optical filter is a key technology in the development of optical modules with high functionality. In order to create such automatic assembly system of optical filter, we have developed the system and program capable of evaluation of $30\mum$-thick film optical filter as well as conventional optical filters performances. Moreover, we have carried out the evaluation of optical filter using developed system and program, and we have compared and analyzed them with by conventional hand work. As results, the measured performances based on the present system are more fast, precise and reliable then those of the conventional hand work. In addition to that, the system can apply for various optical collimators and filters.

  • PDF

Development and Characterization of Active Alignment System of Optical Fiber and Film filter for Micro Optical Communication Module (초소형 광모듈 제작을 위한 광섬유와 박막형 필터의 능동형 정렬 및 평가 시스템)

  • 최두선;박한수;서영호;제태진;황경현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.111-118
    • /
    • 2004
  • The automatic assembly system of micro optical filter is a key technology in the development of optical modules with high functionality. In order to develop an automatic assembly system of optical fiber and filter, we have firstly developed the system and program capable of characterization of 30${\mu}m$-thick film filters as well as conventional optical filters. Moreover, we have carried out the characterization of optical filter using the developed system and program, and compared experimental results with by conventional handwork. The measurement of optical filters using the present system is faster, more precise and more reliable than those based on the conventional handwork.

Microassembly System for the assembly of photonic components (광 부품 조립을 위한 마이크로 조립 시스템)

  • 강현재;김상민;남궁영우;김병규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.241-245
    • /
    • 2003
  • In this paper, a microassembly system based on hybrid manipulation schemes is proposed and applied to the assembly of a photonic component. In order to achieve both high precision and dexterity in microassembly, we propose a hybrid microassembly system with sensory feedbacks of vision and force. This system consists of the distributed 6-DOF micromanipulation units, the stereo microscope, and haptic interface for the force feedback-based microassembly. A hybrid assembly method, which combines the vision-based microassembly and the scaled teleoperated microassembly with force feedback, is proposed. The feasibility of the proposed method is investigated via experimental studies for assembling micro opto-electrical components. Experimental results show that the hybrid microassembly system is feasible for applications to the assembly of photonic components in the commercial market with better flexibility and efficiency.

  • PDF

Design, Fabrication, and Performance Evaluation of a Sensorized Superelastic Alloy Microrobot Gripper (센서화된 초탄성 마이크로그리퍼의 설계, 제작 및 성능평가)

  • Kim, Deok-Ho;Kim, Byung-Kyu;Kang, Hyun-Jae;Kim, Sang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1772-1777
    • /
    • 2003
  • This paper presents the design, fabrication, and calibration of a piezoelectric polymer-based sensorized microgripper. Electro discharge machining technology is employed to fabricate super-elastic alloy based micro gripper. It is tested to present improvement of mechanical performance. For integration of force sensor on the micro gripper, the sensor design based on the piezoelectric polymer PVDF film and fabrication process are presented. The calibration and performance test of force sensor integrated micro gripper are experimentally carried out. The force sensor integrated micro gripper is applied to perform fme alignment tasks of micro opto-electrical components. It successfully supplies force feedback to the operator through the haptic device and plays a main role in preventing damage of assembly parts by adjusting the teaching command.

The Effect of Nano Functionalized Block Copolymer Addition on the Joint Strength of Structural Epoxy Adhesive for Car Body Assembly (차체 구조용 에폭시 접착제의 접합강도에 미치는 나노 기능성 블록공중합체 첨가의 영향)

  • Lee, Hye-rim;Lee, So-jeong;Lim, Chang-young;Seo, Jong-dock;Kim, Mok-soon;Kim, Jun-ki
    • Journal of Welding and Joining
    • /
    • v.33 no.4
    • /
    • pp.44-49
    • /
    • 2015
  • The structural epoxy adhesive used in car body assembly needs the highest level of joint mechanical strength under lap shear, T-peel and impact peel conditions. In this study, the effect of nano functionalized block copolymer addition on the impact peel strength of epoxy adhesive was investigated. DSC analysis showed that the addition of nano functionalized block copolymer did not affect the curing reaction of epoxy adhesive. From single lap shear test, it was found out that the addition of nano functionalized block copolymer slightly decreased the cohesive strength of cured adhesive layer. The addition of nano functionalized block copolymer showed beneficial effect on T-peel strength by changing the adhesive failure mode to the mixed mode. However, the addition of nano functionalized block copolymer just decreased the room temperature impact peel strength. It was considered that the addition of nano functionalized block copolymer could have effect on disturbing the crack propagation only for the case of slow strain rate.

Design and Analysis of an Electro-Magnetic Micro Gripper for Grasping Miniature Sized Objects

  • Jaehong Shim;Won Choe;Kim, Kyunghwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.103.1-103
    • /
    • 2001
  • This paper presents the development of a micro gripper for grasping miniature sized parts in micro-assembly. Particularly, we have paid attention to the problem of manipulating objects of a well defined size range: the one between 1 mm and 0.1mm. In fact, objects larger than 1 mm can be easily handled by conventional precise grippers, while objects smaller than 1 $\mu\textrm{m}$ can be manipulated with special tools like AFM or STM. In this range, we can distinguish between mechanical and biological objects. We have focused our gripping research on the micro mechanical objects. We started from a f degree of freedom planar configuration. The structure of the micro gripper was a type of the elastic flexure hinge and was fabricated in ...

  • PDF

Fabrication and Sensorization of a Superelastic Alloy Microrobot Gripper using Piezoelectric Polymer Sensors (초탄성 마이크로 그리퍼의 제작 및 압전폴리머 센서를 이용한 센서화)

  • 김덕호;김병규;강현재;김상민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.251-255
    • /
    • 2003
  • This paper presents the design, fabrication, and calibration of a piezoelectric polymer-based sensorized microgripper. Electro discharge machining technology is employed to fabricate super-elastic alloy based micro gripper. It is tested to present improvement of mechanical performance. For integration of force sensor on the micro gripper, the sensor design based on the piezoelectric polymer PVDF film and fabrication process are presented. The calibration and performance test of force sensor integrated micro gripper are experimentally carried out. The force sensor integrated micro gripper is applied to perform fine alignment tasks of micro opto-electrical components. It successfully supplies force feedback to the operator through the haptic device and plays a main role in preventing damage of assembly parts by adjusting the teaching command.

  • PDF

A Study on the Cutting Conditions of Self-Induced Chattering in Micro Shaping with Diamond Tool (다이아몬드 미세형삭가공의 자려진동 발생경향에 관한 연구)

  • 임한석;이언주;김술용;안중환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.3
    • /
    • pp.141-149
    • /
    • 1998
  • Diamond shaping is one of the machining strategies to make the optical micro-groove molds, and it is especially useful when the component is an assembly of the linear micro-groove array. A mirrorlike surface and an arbitrary crose-sectional curve can be easily made by the diamond tool. However, the cutting speed of shaping is relatively lower than that of the other cutting methods, and there exist an unstable cutting conditions that generate the chatter. This study is focused on the modeling of the simplified self-induced chatter of the diamond shaping, and the machinabilities of three materials are compared by cutting experiments. From the chatter model and experiments, it is found that the unstable cutting conditions exist when the depth of cut is low and cutting speed is high. It is also found that the brass is relatively good material in micro shaping than copper or aluminium from the cutting experiments.

  • PDF