• Title/Summary/Keyword: Micro/Nano Surface Structures

Search Result 81, Processing Time 0.022 seconds

Study on Machining High-Aspect Ratio Micro Barrier Rib Array Structures using Orthogonal Cutting Method (2 차원 평판가공법을 이용한 고세장비 미세 격벽어레이구조물 가공)

  • Park, Eun-Suk;Choi, Hwan-Jin;Kim, Han-Hee;Jeon, Eun-Chae;Je, Tae-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.12
    • /
    • pp.1272-1278
    • /
    • 2012
  • The micro barrier rip array structures have been applied in a variety of areas including as privacy films, micro heat sinks, touch panel and optical waveguide. The increased aspect ratio (AR) of barrier rip array structures is required in order to increase the efficiency and performance of these products. There are several problems such as burr, defect of surface roughness and deformation and breakage of barrier rip structure with machining high-aspect ratio micro barrier rip array structure using orthogonal cutting method. It is essential to develop technological methods to solve these problems. The optimum machining conditions for machining micro barrier rip array structures having high-aspect ratio were determined according to lengths ($200{\mu}m$ and $600{\mu}m$) and shape angles ($2.89^{\circ}$ and $0^{\circ}$) of diamond tool, overlapped cutting depths ($5{\mu}m$ and $10{\mu}m$), feed rates (100 mm/s) and three machining processes. Based on the optimum machining conditions, micro barrier rib array structures having aspect ratio 30 was machined in this study.

Fabrication and Characterization of Superhydrophobic Glass Surfaces Using Silicon Micro-mold and Thermal-reflow Process (실리콘 마이크로 몰드와 유리의 열-재흐름 현상을 이용한 초소수성 유리 표면 제작 및 젖음 특성 평가)

  • Kim, Seung-Jun;Kong, Jeong-Ho;Lee, Dongyun;Kim, Jong-Man
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.8
    • /
    • pp.591-597
    • /
    • 2012
  • This paper presents regularly micro-textured glass surfaces ensuring the superhydrophobic properties in the Cassie-Baxter regime. The proposed surfaces were fabricated simply and efficiently by filling the glass material into a silicon micro-mold with periodic micro-cavities based on a thermal-reflow process, resulting in a successful demonstration of the textured glass surface with periodically-arrayed micro-pillar structures. The static and dynamic wetting properties of the micro-textured glass surfaces were characterized by measuring the static contact angle (SCA) and contact angle hysteresis (CAH), respectively. In addition, the surface wettability was estimated theoretically based on Wenzel and Cassie-Baxter wetting theories, and compared with the experimental ones. Through the experimental and theoretical observations, it was clearly confirmed that the proposed micro-textured glass surfaces showed the slippery superhydrophobic behaviors in the Cassie-Baxter wetting mode.

Development of Key Technologies for Large Area Forming of Micro Pattern (대면적 미세 성형공정 원천기술 개발)

  • Choi, Doo-Sun;Yoo, Yeong-Eun;Yoon, Jae-Sung;Je, Tae-Jin;Park, Si-Hwan;Lee, Woo-Il;Kim, Bong-Gi;Jeong, Eun-Jeong;Kim, Jin-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.7
    • /
    • pp.777-782
    • /
    • 2011
  • Micro features on the surface are well-known to have significant effects on optical or mechanical properties such as the optical interference, reflectance at the surface, contact angle, interfacial friction, etc. These surface micro features are increasingly employed to enhance the functionality of the applications in various application areas such as optical components for LCD or solar panel. Diverse surface features have been proposed and some of them are showing excellent efficiency or functionality, especially in optical applications. Most applications employing the micro features need manufacturing process for mass production and the injection molding and roll-to-roll forming, which are typical processes for mass production adopting polymeric materials, may be also preferred for micro patterned plastic product. Since the functionality or efficiency of the surface structures generally depends on the shape and the size of the structure itself or the array of the structures on the surface, it would be very important to replicate the features very precisely as being designed during the molding the micro pattern applications. In this paper, a series of research activities is introduced for roll-to-roll forming of micro patterned film including filling of patterns with UV curable resin, demolding of surface structures from the roll tool, control of surface energy and cure shrinkage of resin and dispose time and intensity of the UV light for curing of UV curable resin.

Highly Sensitive MEMS-Type Micro Sensor for Hydrogen Gas Detection by Modifying the Surface Morphology of Pd Catalytic Metal (Pd 촉매금속의 표면형상 변형에 의한 고감도 MEMS 형 마이크로 수소가스 센서 제조공정)

  • Kim, Jung-Sik;Kim, Bum-Joon
    • Korean Journal of Materials Research
    • /
    • v.24 no.10
    • /
    • pp.532-537
    • /
    • 2014
  • In this study, highly sensitive hydrogen micro gas sensors of the multi-layer and micro-heater type were designed and fabricated using the micro electro mechanical system (MEMS) process and palladium catalytic metal. The dimensions of the fabricated hydrogen gas sensor were about $5mm{\times}4mm$ and the sensing layer of palladium metal was deposited in the middle of the device. The sensing palladium films were modified to be nano-honeycomb and nano-hemisphere structures using an anodic aluminum oxide (AAO) template and nano-sized polystyrene beads, respectively. The sensitivities (Rs), which are the ratio of the relative resistance were significantly improved and reached levels of 0.783% and 1.045 % with 2,000 ppm H2 at $70^{\circ}C$ for nano-honeycomb and nano-hemisphere structured Pd films, respectively, on the other hand, the sensitivity was 0.638% for the plain Pd thin film. The improvement of sensitivities for the nano-honeycomb and nano-hemisphere structured Pd films with respect to the plain Pd-thin film was thought to be due to the nanoporous surface topographies of AAO and nano-sized polystyrene beads.

Polyelectrolyte Micropatterning Using Agarose Plane Stamp and a Substrate Having Microscale Features on Its Surface

  • Lee, Min-Jung;Lee, Nae-Yoon;Lee, Sang-Kil;Park, Sung-Su;Kim, Youn-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.10
    • /
    • pp.1539-1542
    • /
    • 2005
  • We have introduced polyelectrolyte micro-patterning technique employing agarose plane stamp and a hard substrate having microscale features on its surface. With this method, chemically micropatterned surfaces with both positive and negative functionalities were successfully embedded in well-defined microstructures, and selective impartment of charge functionalities was confirmed by patterning bead bearing surface charge. Furthermore, this technique allows highly sensitive immobilization of protein onto targeted surface simply by endowing functionalities, which extends the potential of its use as a tool for high-throughput protein microarray and proteomics. Because plane agarose stamp is free of structures on its surface, there is no concern for pattern collapse, and the combination of agarose plane stamp with patterned substrate is more suited for selective protein patterning compared with adopting surface-patterned agarose stamp with flat substrate. Our technique using agarose plane stamp and a substrate having microscale features on its surface suggests a range of possible applications, including the micropatterning of biofunctionalized copolymer having polyelectrolyte block, immobilization of micro- and nanoparticle with biofunctionalities such as biotin and streptavidine, and establishing optoelectronic microstructures with micro-beads on various surfaces.

A Study on the Machinability of Micro-Channel (마이크로 채널의 가공성에 관한 연구)

  • Hong, Min-Sung;Kim, Jong-Min
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.51-57
    • /
    • 2008
  • Recently, the manufacturer of microscopic structures along with the development of technology to produce electronics, communication and semiconductors allows various components to be smaller in size, with higher precision. Therefore, preoccupancy of micro/nano-level machining technology in order to product micro/nano-components and parts is key issue in the field of manufacturing. In this study, machinability of micro machining was studied through the machining of aluminum, brass and steel workpiece. Inspection of the cutting force variation patterns of large numbers of micro machining indicated that characteristics of the workpiece. Surface roughness prediction methods were developed by considering the variation of the static part of the feed direction cutting force. The accuracy of the proposed approaches were tested with experimental data and the agreement between the predictions and actual observations are addressed.

Controlled Surface Functionalities of metals using Femtosecond Laser-induced Nano- and Micro-scale Surface Structures (펨토초 레이저 유도 나노 및 마이크로 구조물을 활용한 금속 표면 기능성 제어)

  • Taehoon Park;Hyo Soo Lee;Hai Joong Lee;Taek Yong Hwang
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.55-61
    • /
    • 2023
  • With femtosecond (fs) laser pulse irradiation on metals, various types of nano- and micro-scale structures can be naturally induced at the surface through laser-matter interaction. Two notable structures are laser-induced periodic surface structures (LIPSSs) and cone/spike structures, which are known to significantly modify the optical and physical properties of metal surfaces. In this work, we irradiate fs laser pulses onto various types of metals, cold-rolled steel, pickled & oiled steel, Fe-18Cr-8Ni alloy, Zn-Mg-Al alloy coated steel, and pure Cu which can be useful for precise molding and imprinting processes, and adjust the morphological profiles of LIPSSs and cone/spike structures for clear structural coloration and a larger range of surface wettability control, respectively, by changing the fluence of laser and the speed of raster scan. The periods of LIPSSs on metals used in our experiments are nearly independent of laser fluence. Accordingly, the structural coloration of the surface with LIPSSs can be optimized with the morphological profile of LIPSSs, controlled only by the speed of the raster scan once the laser fluence is determined for each metal sample. However, different from LIPSSs, we demonstrate that the morphological profiles of the cone/spike structures, including their size, shape, and density, can be manipulated with both the laser fluence and the raster scan speed to increase a change in the contact angle. By injection molding and imprinting processes, it is expected that fs laser-induced surface structures on metals can be replicated to the plastic surfaces and potentially beneficial to control the optical and wetting properties of the surface of injection molded and imprinted products.

Proposed Approaches on Durability Enhancement of Small Structure fabricated on Camera Lens Surface (카메라 렌즈 표면에 형성된 미세 패턴의 내구성 향상 기법 제안)

  • Park, Hong Ju;Choi, In Beom;Kim, Doo-In;Jeong, Myung Yung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.5
    • /
    • pp.467-473
    • /
    • 2019
  • In this study, approached to improve durability of the multi-functional nano-pattern fabricated on the curved lens surface using nanoimprint lithography (NIL) was proposed, and the effects of the proposed methods on functionality after wear test were examined. To improve the mechanical property of ultraviolet(UV)-curable resin, UV-NIL was conducted at the elevated temperature around $60^{\circ}C$. In addition, micro/nano hierarchical structures was fabricated on the lens surface with a durable film mold. Analysis on the worn surfaces of nano-hole pattern and hierarchical structures and measurements on the static water contact angle and critical water volume for roll-off indicated that the UV curing process with elevated temperature is effective to maintain wettability by increasing hardness of resin. Also, it was found that the micro-scale pattern is effective to protect nano-pattern from damage during wear test.

Evaluation of micro-channel characteristics of fused silica glass using powder blasting (Powder blasting을 이용한 Fused silica glass의 마이크로 채널 가공 및 특성 평가에 관한 연구)

  • Lee, Jung-Won;Kim, Tae-Min;Shin, Bong-Cheol
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.36-41
    • /
    • 2020
  • Recently, due to the development of MEMS technology, researches for the production of effective micro structures and shapes have been actively conducted. However, the process technology based on chemical etching has a number of problems such as environmental pollution and time problems due to multi-process. Various processes to cope with this process are being studied, and one of the mechanical etching processes is the powder blasting process. This process is a method of spraying fine particles, which has the advantage of being an effective process in manufacturing hard brittle materials. However, it is also a process that adversely affects the material surface roughness and material properties due to the impact of the injection of fine particles. In this study, after fabricating micro-channels in fused silica glass with excellent optical properties among the hard brittle materials, we used the nano indentation system to analyze the micro parts using nano-particles as well as machinability and surface roughness analysis of the processed surface. The analysis was performed for the effective processing of powder blasting.

Flow Visualization of Flowfield Structures around an Aerospike Nozzle using LIF and PSP

  • NIIMI Tomohide;MORI Hideo;TANIGUCHI Mashio
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.75-80
    • /
    • 2004
  • Aerospike nozzles have been expected to be used for an engine of a reusable space shuttle to respond to growing demand for rocket-launching and its cost reduction. In this study, the flow field structures in any cross sections around clustered linear aerospike nozzles are visualized and analyzed, using laser induced fluorescence (LIF) of nitrogen monoxide seeded in the carrier gas of nitrogen. Since flow field structures are affected mainly by pressure ratio, the clustered linear aerospike nozzle is set inside a vacuum chamber to carry out the experiments in the wide range of pressure ratios from 75 to 200. Flow fields are visualized in several cross-sections, demonstrating the complicated three-dimensional flow field structures. Pressure sensitive paint (PSP) of PtTFPP bound by poly- IBM -co-TFEM is also applied to measurement of the complicated pressure distribution on the spike surface, and to verification of contribution of a truncation plane to the thrust. Finally, to examine the effect of the sidewalls attached to the aerospike nozzle, the flow fields around the nozzle with the sidewalls are compared with those without sidewalls.

  • PDF