• 제목/요약/키워드: MgO Adsorption

검색결과 194건 처리시간 0.028초

Design and Preparation of Magnetic CTAB/Montmorillonite Nanocomposite for Phenols Removal

  • Shen, Rong;Yu, Yichang;Wang, Yue;Xia, Zhining
    • Nano
    • /
    • 제13권10호
    • /
    • pp.1850123.1-1850123.9
    • /
    • 2018
  • The cetyltrimethyl ammonium bromide (CTAB)-modified montmorillonite (MMT) was synthesized via a novel "dissolution and reassembly" method. To determine the optimal formula, the adsorption of C.I. Reactive Red 2 (X3B) with CTAB/MMT was investigated. The optimal CTAB/MMT nanocomposite was used to remove 2,6-dichlorophenol and p-nitrophenol from aqueous solutions. The adsorption results can be described by Langmuir isotherm, and the adsorption capacities were 200 mg/g and 125 mg/g for 2,6-dichlorophenol and p-nitrophenol, respectively. To realize the quick separation and recycle, the magnetic CTAB/MMT was further strategized and synthesized. The adsorption equilibrium time was 15 min for both contaminants; the ions' strength showed a little bit of influence on the adsorption performance. In addition, compared with acidic condition, neutral condition was more beneficial to the adsorption reaction. Due to the addition of $Fe_3O_4$, the adsorption capacities of this magnetic nanocomposite for 2,6-dichlorophenol and p-nitrophenol were a little bit decreased, which were 170 mg/g and 91 mg/g, respectively. However, the magnetic nanocomposite can be separated within 30 s under an external magnetic field, which would be useful in the practical application.

아민형 PP-g-VBC의 NO3-N과 PO4-P 흡착특성 (Nitrate and Phosphate Adsorption Properties by Aminated Vinylbenzyl Chloride Grafted Polypropylene Fiber)

  • 이용재;송재준;나춘기
    • 대한환경공학회지
    • /
    • 제38권10호
    • /
    • pp.543-550
    • /
    • 2016
  • 비닐벤질클로라이드(VBC)를 PP부직포에 광그라프트 중합시키고 에칠렌디아민을 이용한 아민반응을 통해 음이온 교환기능기를 갖는 아민형 PP-g-VBC-EDA 흡착제를 제조하고, 회분식 흡착실험을 통해 음이온 영양염에 대한 흡착특성을 평가하였다. 흡착평형은 랭뮤어 흡착등온식과 잘 일치하였으며, 그로부터 계산한 단일층 최대흡착량은 $NO_3-N$이 59.9 mg/g, $PO_4-P$가 111.4 mg/g이었다. 흡착에너지는 8 kJ/mol 이상으로 이온교환이 주된 흡착메커니즘임을 나타내었다. 흡착속도는 이차흡착 속도모델식과 일치하였으며 9.8-36.7 kJ/mol의 흡착활성화에너지를 나타내어 화학적 흡착과정에 의해 지배되었음을 시사하였다. 흡착에 대한 열역학 함수 ${\Delta}G^o$, ${\Delta}H^o$${\Delta}S^o$는 음이온 영양염에 대한 PP-g-VBC-EDA의 흡착이 자발적이고 발열적으로 일어남을 나타내었다. PP-g-VBC-EDA 흡착제는 0.1 N HCl 용액을 이용한 세척과정을 통해 재생할 수 있었다.

State-selective Dissociation of Water Molecules on MgO Films Using LT-STM

  • Shin, Hyung-Joon;Jung, J.;Motobayashi, K.;Kim, Y.;Kawai, M.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.112-112
    • /
    • 2011
  • The interaction of water molecules with solid surfaces has been a subject of considerable interests, due to its importance in the fields from atmospheric and environmental phenomena to biology, catalysis and electrochemistry [1,2]. Among various kinds of surfaces, a lot of theoretical and experimental studies have been performed regarding water on MgO(100), however, to date, there has been no direct observation of water molecules on MgO by scanning tunneling microscope (STM) as compared with those on metal surface. Here, we will present the direct observation and manipulation of single water molecules on ultrathin MgO(100) films using low-temperature scanning tunneling microscope (LT-STM) [3]. Our results rationalize the previous theoretical predictions of isolated water molecules on MgO including the optimum adsorption sites and non-dissociative adsorption of water. Moreover, we were able to dissociate a water molecule by exciting the vibrational mode of water, which is unattainable on metal surfaces. The enhanced residual time of tunneling electrons in molecules on the insulating film is responsible for this unique pathway toward dissociation of water.

  • PDF

폐감귤박으로 제조한 자성 활성탄을 이용한 2,4-디클로로페놀의 흡착특성 (Adsorption Characteristics of 2,4-Dichlrophenol by Magnetic Activated Carbon Prepared from Waste Citrus Peel)

  • 감상규;이민규
    • 공업화학
    • /
    • 제29권4호
    • /
    • pp.388-394
    • /
    • 2018
  • 폐감귤박으로 제조한 자성 활성탄(MAC, magnetic activated carbon)을 이용하여 수용액 중의 2,4-디클로로페놀(2,4-dichlorophenol, 2,4-DCP)을 제거하는 연구하였다. 접촉시간, MAC의 투여량, 용액의 온도, pH 및 2,4-DCP 농도를 변화시켜 MAC에 의한 2,4-DCP의 흡착특성을 조사하였다. 등온 흡착 실험결과는 Langmuir 등온 모델식에 의해 잘 설명되었으며, Langmuir 등온식으로부터 구한 최대 흡착량은 312.5 mg/g이었다. 흡착속도는 유사 2차 속도식에 의해 잘 기술되었으며, 입자 내 확산 모델 자료는 흡착 과정 동안 막 확산과 입자 내 확산이 동시에 일어나는 것을 말해 주었다. 열역학적 파라미터인 ${\Delta}H^o$${\Delta}G^o$는 각각 양의 값과 음의 값을 가지므로 MAC에 의한 2,4-DCP의 흡착은 자발적이며 흡열반응으로 일어나는 것을 알 수 있었다. 흡착실험을 완료한 후 사용한 MAC는 외부에서 자석을 이용하여 쉽게 분리할 수 있었다.

관형 세라믹 정밀여과와 광촉매 첨가 PES 구의 혼성 수처리 : 질소 역세척 시 유기물 및 흡착, 광산화의 영향 (Hybrid Water Treatment of Tubular Ceramic MF and Photocatalyst Loaded Polyethersulfone Beads : Effect of Organic Matters, Adsorption and Photo-oxidation at Nitrogen Back-flushing)

  • 홍성택;박진용
    • 멤브레인
    • /
    • 제23권1호
    • /
    • pp.61-69
    • /
    • 2013
  • 고도정수처리를 위한 관형 세라믹 정밀여과와 이산화티타늄($TiO_2$) 광촉매 첨가 PES (polyethersulfone) 구의 혼성공정에서 유기물질의 영향 및 정밀여과(MF), PES 구 흡착, 광산화의 역할을 막오염에 의한 저항($R_f$) 및 투과선속(J), 총여과부피($V_T$)를 통해서 비교 및 고찰하였다. 휴믹산의 농도가 증가함에 따라 급격한 막오염으로 인해 $R_f$는 증가하고 J는 감소하였으며, $V_T$는 휴믹산의 농도가 2 mg/L인 조건에서 가장 높았다. 광산화와 흡착의 영향을 알아보기 위해 휴믹산의 농도 4 mg/L와 6 mg/L에서의 결과를 비교하였다. 두 가지 조건에서 공통적으로 정밀여과(MF)만의 단독공정에서 막오염이 급격하게 진행되어 $R_f$값이 가장 높게 나타났고, 총여과부피($V_T$)는 광촉매와 자외선의 혼성공정(MF + $TiO_2$ + UV)에서 가장 높은 값을 나타내었다. 탁도와 유기물질의 평균처리효율은 MF + $TiO_2$ + UV 공정에서 가장 높은 값을 나타내었다.

Adsorption kinetics and isotherms of phosphate and its removal from wastewater using mesoporous titanium oxide

  • Lee, Kwanyong;Jutidamrongphan, Warangkana;Lee, Seokwon;Park, Ki Young
    • Membrane and Water Treatment
    • /
    • 제8권2호
    • /
    • pp.161-169
    • /
    • 2017
  • The adsorption of phosphate onto mesoporous $TiO_2$ was investigated in order to reduce phosphorus concentrations in wastewater and provide a potential mode of phosphorus recovery. Three equilibrium isotherms were used to optimize and properly describe phosphate adsorption ($R^2$>0.95). The maximum capacity of phosphate on the adsorbent was found to be 50.4 mg/g, which indicated that mesoporous $TiO_2$ could be an alternative to mesoporous $ZrO_2$ as an adsorbent. A pseudo-second order model was appropriately fitted with experimental data ($R^2$>0.93). Furthermore, the suitable pH for phosphate removal by $TiO_2$ was observed to be in the range of pH 3-7 in accordance with ion dissociation. In contrast, increasing the pH to produce more basic conditions noticeably disturbed the adsorption process. Moreover, the kinetics of the conducted temperature study revealed that phosphate adsorption onto the $TiO_2$ adsorbent is an exothermic process that could have spontaneously occurred and resulted in a higher randomness of the system. In this study, the maximum adsorption using real wastewater was observed at $30^{\circ}C$.

Cr(VI) removal using Fe2O3-chitosan-cherry kernel shell pyrolytic charcoal composite beads

  • Altun, Turkan;Ecevit, Huseyin
    • Environmental Engineering Research
    • /
    • 제25권3호
    • /
    • pp.426-438
    • /
    • 2020
  • In this study, cherry kernel shell pyrolytic charcoal was synthesized (CKSC) and composite beads were obtained by blending this pyrolytic charcoal with chitosan and Fe2O3 nanoparticles (Fe-C-CKSC). Cr(VI) adsorption from aqueous solutions by Fe-C-CKSC composite beads and CKSC adsorbents was studied comparatively. The effects of Cr(VI) initial concentration, adsorbent dosage, contact time, pH and temperature parameters on Cr(VI) adsorption were investigated. Adsorption reached an equilibrium point within 120 min for CKSC and Fe-C-CKSC adsorbents. The maximum Cr(VI) removal was obtained at the initial pH value of 1.56 for CKSC and 2.00 for Fe-C-CKSC. The optimum adsorbent dosage was found to be 5 g/L for CKSC and 3 g/L for Fe-C-CKSC. Based on the Langmuir model, the maximum adsorption capacities were calculated as 14.455 mg/g and 47.576 mg/g for CKSC and Fe-C-CKSC, respectively. Thermodynamic and kinetic studies were performed. As a result of adsorption kinetics calculations, adsorption was found to be consistent with the pseudo second order kinetic model. Characterization of the synthesized adsorbents was performed by SEM, BET, FTIR and elemental analysis. This study has shown that low cost adsorbents CKSC and Fe-C-CKSC can be used in Cr(VI) removal from aqueous solutions.

Microfiltration/ultrafiltration polyamide-6 membranes for copper removal from aqueous solutions

  • El-Gendi, Ayman;Ali, Sahar;Abdalla, Heba;Saied, Marwa
    • Membrane and Water Treatment
    • /
    • 제7권1호
    • /
    • pp.55-70
    • /
    • 2016
  • Microfiltration/ultrafiltration (MF/UF) Adsorptive polyamide-6 (PA-6) membranes were prepared using wet phase inversion process. The prepared PA-6 membranes are characterized by scanning electron microscopy (SEM), porosity and swelling degree. In this study, the membranes performance has examined by adsorptive removal of copper ions from aqueous solutions in a batch adsorption mode. The $PA-6/H_2O$ membranes display sponge like and highly porous structures, with porosities of 41-73%. Under the conditions examined, the adsorption experiments have showed that the $PA-6/H_2O$ membranes had a good adsorption capacity (up to 120-280 mg/g at the initial copper ion concentration ($C_0$) = 680 mg/L, pH7), fast adsorption rates and short adsorption equilibrium times (less than 1.5-2 hrs) for copper ions. The fast adsorption in this study may be attributed to the high porosities and large pore sizes of the $PA-6/H_2O$ membranes, which have facilitated the transport of copper ions to the adsorption. The results obtained from the study illustrated that the copper ions which have adsorbed on the polyamide membranes can be effectively desorbed in an Ethylene dinitrilotetra acetic acid Di sodium salt ($Na_2$ EDTA) solution from initial concentration (up to 92% desorption efficiency) and the PA-6 membranes can be reused almost without loss of the adsorption capacity for copper ions. The results obtained from the study suggested that the $PA-6/H_2O$ membranes can be effectively applied for the adsorptive removal of copper ions from aqueous solutions.

Removal characteristics of chromium by activated carbon/CoFe2O4 magnetic composite and Phoenix dactylifera stone carbon

  • Foroutan, Rauf;Mohammadi, Reza;Ramavandi, Bahman;Bastanian, Maryam
    • Korean Journal of Chemical Engineering
    • /
    • 제35권11호
    • /
    • pp.2207-2219
    • /
    • 2018
  • Activated carbon (AC) was synthesized from Phoenix dactylifera stones and then modified by $CoFe_2O_4$ magnetic nanocomposite for use as a Cr(VI) adsorbent. Both $AC/CoFe_2O_4$ composite and AC were fully characterized by FTIR, SEM, XRD, TEM, TGA, and VSM techniques. Based on the surface analyses, the addition of $CoFe_2O_4$ nanoparticles had a significant effect on the thermal stability and crystalline structure of AC. Factors affecting chromium removal efficiency like pH, dosage, contact time, temperature, and initial Cr(VI) concentration were investigated. The best pH was found 2 and 3 for Cr adsorption by AC and $AC/CoFe_2O_4$ composite, respectively. The presence of ion sulfate had a greater effect on the chromium sorption efficiency than nitrate and chlorine ions. The results illustrated that both adsorbents can be used up to seven times to adsorb chromium. The adsorption process was examined by three isothermal models, and Freundlich was chosen as the best one. The experimental data were well fitted by pseudo-second-order kinetic model. The half-life ($t_{1/2}$) of hexavalent chromium using AC and $AC/CoFe_2O_4$ magnetic composite was obtained as 5.18 min and 1.52 min, respectively. Cr(VI) adsorption by AC and $AC/CoFe_2O_4$ magnetic composite was spontaneous and exothermic. In general, our study showed that the composition of $CoFe_2O_4$ magnetic nanoparticles with AC can increase the adsorption capacity of AC from 36 mg/L to 70 mg/L.

무기물계 폐기물로 합성한 제올라이트의 코발트, 니켈, 구리 이온의 회수 성능 (The Recovery Performance of Co, Ni, and Cu Ions Using Zeolites Synthesized from Inorganic Solid Wastes)

  • 이창한
    • 한국물환경학회지
    • /
    • 제28권5호
    • /
    • pp.723-728
    • /
    • 2012
  • In this study, zeolites were synthesized by a fusion and a hydrothermal methods using a coal fly ash and a waste catalyst. The recovery performance of metal ions on the structure property of synthetic zeolites was evaluated as comparing the adsorption kinetics (Lagergen 2nd order model) and isotherm (Langmuir model) of $Co^{2+},\;Ni^{2+}$, and $Cu^{2+}$ ions. The synthetic zeolites (Z-C1 and Z-W5) were similarly assigned to XRD peaks in a reagent grade Na-A zeolite (Z-WK : $Na_{12}Al_{12}Si_{12}O_{48}\;27.4H_2O$). Adsorption rates of Z-W5 and Z-C1 were in the order of $Cu^{2+}\;>\;Co^{2+}\;>\;Ni^{2+}\;and\;Ni^{2+}\;>\;Cu^{2+}\;>\;Co^{2+}$, respectively. They had influenced upon structure properties of zeolite. Selectivities of metal ions and maximum equilibrium adsorption capacities, $q_{max}$, in Z-C1 and Z-W5 were in the order of $Ni^{2+}$ (127.9 mg/g) > $Cu^{2+}$ (94.7 mg/g) > $Co^{2+}$ (82.6 mg/g) and $Cu^{2+}$ (141.3 mg/g) > $Co^{2+}$ (122.2 mg/g) > $Ni^{2+}$ (87.6 mg/g), respectively. The results show that the synthetic zeolites, Z-C1 and Z-W5, are able to recover metal ions selectively in wastewater.