• Title/Summary/Keyword: Mg-Zn-Y alloy

Search Result 239, Processing Time 0.026 seconds

Formation of $Al_2O_3$-Ceramics by Reactive Infiltration of Al-alloy into Insulation Fiber Board (Al-합금의 단열섬유판 반응침투에 의한 $Al_2O_3$-세라믹스의 형성)

  • 김일수
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.5
    • /
    • pp.483-490
    • /
    • 1997
  • Al2O3/metal composites were fabricated by oxidation and reaction of molten Al-alloy into two types of commercial Al2O3-SiO2 fibrous insulation board. The growth rate, composition and microstructure of these materials were described. An AlZnMg(7075) alloy was selected as a parent alloy. Mixed polycrystalline fiber and glass phase fiber were used as a filler. The growth surface of an alloy was covered with and without SiO2. SiO2 powder was employed as a surface dopant to aid initial oxidation of Al-alloy. Al-alloy, SiO2, fiber block and growth inhibitor CaSiO3 were packed sequentially in a alumina crucible and oxidized in air at temperature range 90$0^{\circ}C$ to 120$0^{\circ}C$. The growth rate of composite layer was calculated by measuring the mass increasement(g) per unit surface($\textrm{cm}^2$). XRD and optical microscope were used to investigate the composition and phase of composites. The composite grown at 120$0^{\circ}C$ and with SiO2 dopant showed rapid growth rate. The growth behavior differed a little depending on the types of fiber used. The composites consist of $\alpha$-Al2O3, Al, Si and pore. The composite grown at 100$0^{\circ}C$ exhibited better microstructure compared to that grown at 120$0^{\circ}C$.

  • PDF

Mechanical Properties of SiC Particulate Reinforced Mg Matrix Composites Fabricated by Melt Stirring Method (용탕교반법에 의한 SiC 입자강화 Mg기 복합재료의 기계적 특성)

  • Lim, Suk-Won;Choh, Takao;Park, Young-Jin
    • Journal of Korea Foundry Society
    • /
    • v.13 no.5
    • /
    • pp.441-449
    • /
    • 1993
  • SiC particulate reinforced magnesium matrix composites were fabricated by melt stirring method. The effet of several factors on mechanical properties and the efficiency of melt stirring method from the viewpoint of these properties were investigated. The tensile strength increased and the elongation decreased with decrease of the particle size or the increase of the paticulate volume fraction for pure magnesium matrix and Mg-5%Zn alloy matrix composites. A longer stirring time improved the tensile strength of these composites. The tensile strength of Mg-5%Ca alloy matrix composites which shows no uniform paticulate distribution was a little lower than that of matrix alloy. Rapid solidification rate is preferred for the improved tensile strength of these composites. The pure magnesium matrix and Mg-5%Zn alloy matrix composites have tensile strength of about 400MPa. This value agrees with the tensile strength of some magnesium matrix composites fabricated by liquid infiltration method or powder metallurgy method at the same volume fraction of reinforcements of whisker or particle. Therefore, the melt stirring method which has the advantages of simple process is considered to be efficient in fabricating magnesium matrix composites.

  • PDF

Effect of Aging Treatment on the Microstructure and Mechanical Properties of Mg-6Al-xZn (x : 1.5, 2.5) Alloys Fabricated by Squeeze Casting (용탕단조된 Mg-6Al-xZn (x=1.5, 2.5) 합금(合金)의 미세조직 및 기계적 성질에 미치는 시효의 영향)

  • Kim, Soon Ho
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 1999
  • This study has investigated the effect of aging treatment on the microstructure and mechanical properties of Mg-6Al-xZn(x = 1.5, 2.5) alloys fabricated by the squeeze casting process. The microstructures of as-squeeze cast were composed of pro-eutectic ${\alpha}$, super saturated ${\alpha}$ and ${\beta}(Mg_{17}Al_{12})$ compound. Aged at both $200^{\circ}C$ and $240^{\circ}C$, Mg-6Al-xZn alloys showed the peak hardness due to the formation of ${\beta}(Mg_{17}Al_{12})$ precipitates. The discontinuous precipitates of the lamella type are predominant at $200^{\circ}C$ aging treatment, while the finely dispersed continuous precipitates were dominant at $240^{\circ}C$ aging treatment. Mg-6Al-xZn alloys fabricated by the squeeze casting process had the better combination of tensile strength and elongation compared to the conventionally cast alloys. As zinc contents increased, the tensile strength was increased by the solid solution strengthening effect of zinc.

  • PDF

Effects of the Types of Coating on the Laser Brazing Characteristics of Dissimilar Joints between Mg Alloy and Steel Sheet (마그네슘합금과 철강 이종소재의 레이저 브레이징 특성에 미치는 도금층의 영향)

  • Lee, Mok-Young;Kim, Sook-Whan;Nasiri, Ali M.;Zhou, Norman Y.
    • Journal of Welding and Joining
    • /
    • v.31 no.4
    • /
    • pp.7-12
    • /
    • 2013
  • The dissimilar welding between magnesium alloy and steel sheet was required in automobile industry to increase the strength of the dissimilar joints. Laser brazing is one of the good joining processes for Mgsteel dissimilar joint. In this study, the effect of coating materials was evaluated on the laser brazing for the dissimilar joint between AZ31 and coated steels such as Zn, Sn and Ni. Diode direct laser was used to braze the lap-edge joint with Mg600 filler wire and Superior #21 flux. The wettability was best on Zn coated steel. The interlayer was formed at the interface between brazement and steel for all coating materials. The strengths of brazed specimen were 146.5N/mm, 204.6N/mm and 101.6N/mm for Zn, Sn and Ni coated steel respectively.

Effect of Spark Plasma Sintering on the Materials Properties of Water Atomized Al-Zn-Mg Alloy (Spark plasma sintering을 이용한 수분무 Al-Zn-Mg합금분말의 소결특성)

  • Kim, Sun-Mi;Kim, Taek-Soo;Kim, Young-Do;Kim, Jeong-Gon
    • Journal of Powder Materials
    • /
    • v.16 no.1
    • /
    • pp.63-67
    • /
    • 2009
  • In order to investigate the effect of rapid solidification on the microstructure and the mechanical properties of Al-Zn-Mg system alloys, water atomization was carried out, since the water atomization beared the highest solidification rate among the atomization processes. The as atomized alloy powders consisted of fine grains less than 4 ${\mu}m$ in diameter, and the second particles were not detected on XRD. The microstructure as solidified was maintained even after the spark plasma sintering at the heating rate of 50 K/min. On the other hand, lower rate of 20 K/min induced a formation of $MgZn_2$ particles, resulting in strengthening of the matrix. The density was almost constant at the temperature above 698K. The sintering temperature above 698K had no effect on the strength of the sintered materials.

Effect of Scancium Content on The Hot Extrusion of Al-Zn-Mg-(Sc) Alloy (Al-Zn-Mg-(Sc) 합금의 고온가공성에 미치는 Sc 함량의 영향)

  • Kim, Jin-Ho;Kim, Jeoung-Han;Yeom, Jong-Taek;Lee, Dong-Geun;Park, Nho-Kwang
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.184-187
    • /
    • 2006
  • The effects of scandium content and extrusion parameters on Al-Zn-Mg-(Sc) alloys were examined. Three kinds of Al-Zn-Mg-(Sc) alloys with up to 0.30 wt.% Sc were prepared. The compression test was conducted to investigate the microstructure evolution during hot deformation. Despite of microstructural differences in the alloys, deformation behaviors were very similar. After extrusion at $350^{\circ}C$ with the ram speed of 15mm/sec, AA7075 showed a moderate surface quality compared with other Sc containing alloys, which was attributed to low flow stresses. AA7075 showed coarse-grained bands in surface region. With the ram speed of 1.5mm/sec at $350^{\circ}C$, the surface quality of the alloys was sound due to low friction stresses and deformation heating. As the Sc content increased, tensile strengths and elongations at room temperature improved.

  • PDF

Grain Refinement of Mg-5wt%Zn Alloy by Rapid Solidification Process (급냉응고에 의한 Mg-5wt%Zn 합금의 결정립 미세화)

  • Kim, Yeon-Wook;Lee, Eun-Jong;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.17 no.3
    • /
    • pp.302-308
    • /
    • 1997
  • In spite of the fact that magnesium has low density and good machinability, its applications are restricted as a structural engineering material because of the poor strength, ductility, and corrosion resistance of the conventional ingot metallurgy alloys. Such properties can be improved by microstructural refinement via rapid solidification processing. In this study, Mg-5wt%Zn alloys have been produced as continuous strips by the melt overflow technique. In order to evaluate the influence of the cooling rate on the grain refinement and mechanical properties, seven different thickness strips were produced by means of controlling the speed of the cooling wheel. Then the microstructual observations were undertaken with the objective of evaluating the grain refinement as function of the cooling rate. The tremendous increase in hardness of Mg-Zn alloy was mainly due to the refinement of the grain structure by the effect of rapid solidification. The formation of intermetallic phases on the grain boundaries may have a positive effect on the corroion resistance. Therefore, despite competition from many other developments, the rapid solidification process emerges as a valuable method to develop superior and commercially acceptable magnesium alloys.

  • PDF

Effect of Cooling Rate on Lamellar Structure and Hardness of Discontinuous Precipitates in Mg-Al-Zn Alloy (Mg-Al-Zn 합금에서 불연속 석출물의 층상 구조와 경도에 미치는 냉각 속도의 영향)

  • Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.6
    • /
    • pp.271-276
    • /
    • 2020
  • The relationship between the hardness and interlamellar spacing of discontinuous precipitates (DPs) formed by continuous cooling was studied for Mg-9%Al-1%Zn alloy. After solution treatment at 683 K for 24 h, the specimens were cooled to room temperature with different cooling rates ranging from 0.2 to 2 K·min-1, in order to obtain DPs with various interlamellar spacings. It was found that cooling rate of 2 K·min-1 yielded only small amount of nodular DPs at the grain boundaries, while cooling rates below 2 K·min-1 yielded both DPs and continuous precipitates (CPs). The volume fraction of DPs increased with increasing cooling rate up to 0.5 K·min-1, over which it abruptly decreased. The hardness of DPs was increased with an increase in the cooling rate, whereas the interlamellar spacing of the DPs was decreased with respect to cooling rate. The hardness of the DPs formed by continuous cooling was correlated with the interlamellar spacing and can follow a Hall-Petch type relation as in the case of pearlite with lamellar morphology.

Microstructure and Mechanical Properties of a Cold-Rolled Al-6.5Mg-1.5Zn-0.5Fe-0.5Mn System Alloy (냉간압연된 Al-6.5Mg-1.5Zn-0.5Fe-0.5Mn계 합금의 미세조직 및 기계적 특성)

  • Jo, Sang-Hyeon;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.30 no.5
    • /
    • pp.246-251
    • /
    • 2020
  • The annealing characteristics of cold-rolled Al-6.5Mg-1.5Zn-0.5Fe-0.5Mn alloy, newly designed as an automobile material, are investigated in detail, and compared with those of other aluminum alloys. Using multi-pass rolling at room temperature, the ingot aluminum alloy is cut to a thickness of 4 mm, width of 30 mm, and length of 100 mm to reduce the thickness to 1 mm (r = 75 %). Annealing after rolling is performed at various temperatures ranging from 200 to 500 ℃ for 1 hour. The specimens annealed at temperatures up to 300 ℃ show a deformation structure; however, from 350 ℃ they have a recrystallization structure consisting of almost equiaxed grains. The hardness distribution in the thickness direction of the annealed specimens is homogeneous at all annealing temperatures, and their average hardness decreases with increasing annealing temperature. The tensile strength of the as-rolled specimen shows a high value of 496 MPa; however, this value decreases with increasing annealing temperature and becomes 338 MPa after annealing at 400 ℃. These mechanical properties of the specimens are compared with those of other aluminum alloys, including commercial 5xxx system alloys.

Hot-dipped Al-Mg-Si Coating Steel - Its Structure, Electrochemical and Mechanical Properties -

  • Tsuru, Tooru
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.233-238
    • /
    • 2010
  • Hot-dipped Al-Mg-Si coatings to alternate Zn and Zn alloy coatings for steel were examined on metallographic structure, corrosion resistance, sacrificial ability, formation and growth of inter-metallic compounds, and mechanical properties. Near the eutectic composition of quasi-binary system of Al-$Mg_2Si$, very fine eutectic structure of ${\alpha}$-Al and $Mg_2Si$ was obtained and it showed excellent corrosion resistivity and sacrificial ability for a steel in sodium chloride solutions. Formation and growth of Al-Fe inter-metallic compounds at the interface of substrate steel and coated layer was suppressed by addition of Si. The inter-metallic compounds layer was usually brittle, however, the coating layer did not peel off as long as the thickness of the inter-metallic compounds layer was small enough. During sacrificial protection of a steel, amount of hydrogen into the steel was more than ten times smaller than that of Zn coated steel, suggesting to prevent hydrogen embrittlement. Al-Mg-Si coating is expected to apply for several kinds of high strength steels.