• Title/Summary/Keyword: Mg-Al alloy

Search Result 640, Processing Time 0.031 seconds

Fabrication and Mechanical Characterization of the Mg-Zn-RE/Al1050 Clad Sheet (Mg-Zn-RE/Al1050 클래드재의 제조 및 기계적 특성)

  • Shin, Beomsoo;Yoon, Sockyeon;Ha, Changseong;Yun, Seungkwan;Bae, Donghyun
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.2
    • /
    • pp.116-121
    • /
    • 2010
  • The Mg-Zn-RE alloy cladded with the thin Al1050 sheet was fabricated by means of a roll bonding process at $280^{\circ}C$.Microstructures and mechanical properties of the clad sheets were investigated. After heat treatment at $230^{\circ}C$ for 30 min, an Mg-rich diffusion layer with about $2{\mu}m$ in thickness was developed at the Mg and Al interface. Tensile tests were carried out in a temperature range up to $300^{\circ}C$. The clad sheet exhibits superior elongation to failure not only at room temperature but also at elevated temperatures compared with those of the Mg alloy sheet. For the deformed specimens, interface debonding does not occur and the diffusion layer shows only a few cracks.

The Fatigue Behavior of Mechanically Alloyed Al-4Mg Alloys Dispersed with Oxide Particles (기계적합금화된 분산형 Al-4Mg기 합금의 피로거동)

  • Pyun, J.W.;Cho, J.S.;Kwun, S.I.;Jo, Y.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.4
    • /
    • pp.237-242
    • /
    • 1993
  • The fatigue behaviors of mechanically alloyed Al-4Mg alloys dispersed with either $Al_2O_3$ or $MgAl_2O_4$ oxide particles were investigated. This study maily concerned with the role of coherency of dispersed particles with the matrix on the fatigue behavior of the alloys. The $MgAl_2O_4$ which has a spinel structure with the lattice parameter of exactly the twice of Al showed the habit relation with the matrix. The mechanically alloyed Al-4Mg alloys showed stable stress responses with fatigue cycles from start to failure regadless of strain amplitudes and of existence of dispersoids. The Al-4Mg alloy dispersed with $MgAl_2O_4$ showed not only the better static mechanical properties but also the better low cycle fatigue resistance than that with $Al_2O_3$, i.e., much higher plastic strain energy dissipated to failure, at low strain amplitude. However, this alloy showed inferior fatigue resistance to that dispersed with $Al_2O_3$ or that without dispersion at high strain amplitude. These results imply that $MgAl_2O_4$ may promote lowering the stacking fault energy of the alloy inherited from the coherency with the matrix so that dislocations shuttle back and forth on the same slip plane without cross slipping to other planes during fatigue at low strain amplitude resulting in long fatigue life.

  • PDF

Effect of Ca additions on Mechanical Properties of Mg-4Al-2Sn-xCa Die-Casting Alloys (Ca 첨가에 따른 Mg-4Al-2Sn-xCa 다이캐스팅 합금의 기계적특성 연구)

  • Kim, Young-Min;Lee, Young-Cheol;Park, Yong-Ho
    • Journal of Korea Foundry Society
    • /
    • v.31 no.5
    • /
    • pp.293-301
    • /
    • 2011
  • Representative magnesium alloys applied to the die-casting are AZ91, AM60, etc., and the application of these alloys is restricted to components operating at moderate temperatures, due to grain boundary siding of ${\beta}$-phase($Mg_{17}Al_{12}$) at temperatures above $120^{\circ}C$. Heat-resistant magnesium alloys such as AE42, AE44 have been developed, but that have been too burdensome to produce because of the expensive rare earth materials. Research work for the development of low-priced heat-resistant magnesium alloy is actively in progress and positive results are being reported. This study aims to investigate the effect of Ca additions on mechanical properties of Mg-4Al-2Sn heat resistant magnesium alloys. Mg-4Al-2Sn alloys with Ca (0wt.%, 0.3wt.%, 0.7wt.%, 1wt.%) have been produced through the die-casting process for the development of low-priced heat-resistant magnesium alloy, and high temperature tensile tests are performed using the specimens. The results showed that mechanical properties of Mg-4Al-2Sn-xCa increased with the addition of Ca up to 0.7wt.% Ca and further addition of Ca deteriorated the mechanical properties of the alloys. A significant amount of porosity was observed at the sample with 1wt%. Ca and the longer freezing range of the alloy was believed to cause the formation of porosity.

Fabrication of $Al_2O_{3p}/Al$ composites by in-situ Reaction Process of Molten Al (In-situ 반응에 의한 $Al_2O_{3p}/Al$기 복합재료의 제조)

  • 김재동;정해용;고성위
    • Composites Research
    • /
    • v.12 no.3
    • /
    • pp.36-44
    • /
    • 1999
  • The fabrication process of $Al_2O_{3p}/Al$ composite by in-situ process was investigated. The effects of processing variables such as addition type and content of Mg, processing temperature and time on the infiltration behavior of molten Al, microstructure and hardness were investigated. When the pure Al was infiltrated into mixtures of Mg and $Al_2O_3l$ powder, processing temperature required to spontaneous infiltration was decreased, and the content of Mg was the most powerful variable for infiltration of molten Al. But when the Al-Mg alloy was infiltrated into $Al_2O_3l$ particles, infiltration ratio indicated nearly same value regardless of Mg content in alloy and processing temperature, and critical processing temperature required to spontaneous infiltration was $800^{\circ}C$. The $Al_2O_{3p}/Al$ composites which were fabricated by mixtures of Mg and $Al_2O_3l$ powders resulted in high hardness value, but hardness values were scattered due to non uniform dispersion of $Al_2O_3l$ particles by excessive reaction of Mg.

  • PDF

The Effect of Additive Elements on the Formation of Oxide Skins of AI-10wt.% Si Alloy Melts (용융 Al-10wt.%Si 합금의 산화피 형성에 미치는 첨가원)

  • 최재영;양정식;백영남
    • Journal of Surface Science and Engineering
    • /
    • v.22 no.4
    • /
    • pp.179-184
    • /
    • 1989
  • This study seeks to the morphological changes in the oxide skin of the Al-10wt.%si alloy melts. These changes depend on the oxidation time and the temperature of the molten alloy, as well as the effects of adding Mg, Cu and Ni. Thess affects observed by X-ray diffractometer(XRD) and scanning electron microscope(SEM)' Very litte oxide skins on Al-10wtwt.%Si alloy melts can be detected by XRD because it is less than the measuring capabillity of the XRD, or the formation of noncrystalline oxide skins oxide skins canbe deteced by SEM. The addition of 1%Mg and 1%Cu-1%Mg-2.5%Ni to this base alloy crystallized the structure of the oxide skins and increased the oxidation in proportion to the length of time, but adding 3% had hardiy anyaffect at all on the crystal structure of the oxide skins.

  • PDF

Microstructural Characteristics and Hardness of Discontinuous Precipitates Formed by Continuous Cooling and Isothermal Aging in Mg-Al Alloy (Mg-Al 합금에서 연속 냉각 및 등온 시효로 생성된 불연속 석출물의 미세조직 특징과 경도)

  • Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.4
    • /
    • pp.173-179
    • /
    • 2020
  • The purpose of this study was to investigate comparatively the microstructural characteristics and hardness of discontinuous precipitates (DPs) in Mg-9%Al alloy, which were formed by continuous cooling (CC) from 678 K to RT and isothermal aging (IA) at 413 K, respectively. In as-cast state, the Mg-9%Al alloy consisted of partially divorced eutectic β(Mg17Al12) particles with a small amount of DPs showing (α+β) lamellar morphology adjacent to the β particles. The DPs formed by CC had interlamellar spacings in a broad range of 0.85~2.12 ㎛ (1.51 ㎛ in average) owing to the various formation temperatures in response to continuous cooling process. Meanwhile, the DPs formed by IA had relatively narrower interlamellar spacings of 0.14~0.29 ㎛ (0.21 ㎛ in average), which is associated with the low and constant formation temperature. Thinner and higher volume fraction of β phase layers were noticeable in the DPs formed by IA. Higher hardness values were obtained in the DPs formed by IA than the DPs formed by CC, which may well be ascribed to the finer lamellar structure and higher β phase content of the DPs formed by IA.

Effects of Mg-Al Alloy and Pure Ti on High Temperature Wetting and Coherency on Al Interface Using the Sessile Drop Method (정적법을 이용한 Mg-Al계 합금과 순수 Ti의 고온 젖음현상 및 Al계면에서의 정합성에 미치는 영향)

  • Han, Chang-Suk;Kim, Woo-Suk
    • Korean Journal of Materials Research
    • /
    • v.31 no.1
    • /
    • pp.38-42
    • /
    • 2021
  • In this study, high temperature wetting analysis and AZ80/Ti interfacial structure observation are performed for the mixture of AZ80 and Ti, and the effect of Al on wetting in Mg alloy is examined. Both molten AZ80 and pure Mg have excellent wettability because the wet angle between molten droplets and the Ti substrate is about 10° from initial contact. Wetting angle decreases with time, and wetting phenomenon continues between droplets and substrate; the change in wetting angle does not show a significant difference when comparing AZ80-Ti and Mg-Ti. As a result of XRD of the lower surface of the AZ80-Ti sample, in addition to the Ti peak of the substrate, the peak of TiAl3, which is a Ti-Al intermetallic compound, is confirmed, and TiAl3 is generated in the Al enrichment region of the Ti substrate surface. EDS analysis is performed on the droplet tip portion of the sample section in which pure Mg droplets are dropped on the Ti substrate. Concentration of oxygen by the natural oxide film is not confirmed on the Ti surface, but oxygen is distributed at the tip of the droplet on the Mg side. Molten AZ80 and Ti-based compound phases are produced by thickening of Al in the vicinity of Ti after wetting is completed, and Al in the Mg alloy does not affect the wetting. The driving force of wetting progression is a thermite reaction that occurs between Mg and TiO2, and then Al in AZ80 thickens on the Ti substrate interface to form an intermetallic compound.

Effect of Flux Chloride Composition on Microstructure and Coating Properties of Zn-Mg-Al Ternary Alloy Coated Steel Product (플럭스 염화물 조성이 Zn-Mg-Al 3원계 합금도금층의 미세조직 및 도금성에 미치는 영향)

  • Kim, Ki-Yeon;So, Seong-Min;Oh, Min-Suk
    • Korean Journal of Materials Research
    • /
    • v.31 no.12
    • /
    • pp.704-709
    • /
    • 2021
  • In the flux used in the batch galvanizing process, the effect of the component ratio of NH4Cl to ZnCl2 on the microstructure, coating adhesion, and corrosion resistance of Zn-Mg-Al ternary alloy-coated steel is evaluated. Many defects such as cracks and bare spots are formed inside the Zn-Mg-Al coating layer during treatment with the flux composition generally used for Zn coating. Deterioration of the coating property is due to the formation of AlClx mixture generated by the reaction of Al element and chloride in the flux. The coatability of the Zn-Mg-Al alloy coating is improved by increasing the content of ZnCl2 in the flux to reduce the amount of chlorine reacting with Al while maintaining the flux effect and the coating adhesion is improved as the component ratio of NH4Cl to ZnCl2 decreases. Zn-Mg-Al alloy-coated steel products treated with the optimized flux composition of NH4Cl·3ZnCl2 show superior corrosion resistance compared to Zn-coated steel products, even with a coating weight of 60 %.

Effect of Sludge Formation on the Thickness of Die Soldering Reaction Layer in Al-9Si-0.3Mg Casting Alloy (Al-9Si-0.3Mg 주조용 합금에서 Sludge 형성이 금형소착 반응층 두께에 미치는 영향)

  • Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.30 no.2
    • /
    • pp.76-82
    • /
    • 2010
  • Effect of reaction time and sludge formation on the thickness of die soldering reaction layer has been studied in Al-9Si-0.3Mg casting alloy. Ternary ${\alpha}_{bcc}-Al_8Fe_2Si$ and ${\alpha}_{hcp}-Al_8Fe_2Si$ intermetallic compounds formed at the interface of SKD61 tool steel by interaction diffusion of Al, Fe and Si atoms after 0.5hr and 6hr immersion time, respectively. Binary ${\eta}-Fe_2Al_5$ additionally formed at the interface of SKD61 tool steel after 10hr immersion time. Thickness of soldering reaction layer in die surface increased as immersion time increased from 0.5hr to 24hr. Sludge formation was ascertained in the samples which were immersed in the melts more than 10hr. Reaction of die soldering after sludge formation was more accelerated than that of before sludge formation due to a decrease in Fe content, followed by higher diffusion rate of Al in the melt by sludge formation.

Corrosion Behavior of Mg-Al-Zn-CaO Alloy (Mg-Al-Zn-CaO 합금의 부식 거동)

  • Moon, Jung-Hyun;Jun, Joong-Hwan;Kim, Young-Jik
    • Journal of Korea Foundry Society
    • /
    • v.33 no.3
    • /
    • pp.127-133
    • /
    • 2013
  • The influences of a small amount of CaO addition on the microstructure and corrosion behavior of AZ81 casting alloy have been investigated by means of optical microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, immersion and electrochemical tests. The added CaO led to the refinement of ${\alpha}$-Mg grains and the decrease in ${\beta}$ precipitate content by the formation of an $Al_2Ca$ phase. The AZ81-CaO alloy had a better corrosion resistance than the AZ81 alloy. The microstructural characterization on the corroded surface revealed that the enhanced corrosion resistance of the CaO-containing alloy may well be ascribed to the increased barrier effect of precipitates formed more continuously along the grain boundaries and the incorporation of Al and Ca elements into the corrosion film, by which it became more protective.