DOI QR코드

DOI QR Code

Fabrication and Mechanical Characterization of the Mg-Zn-RE/Al1050 Clad Sheet

Mg-Zn-RE/Al1050 클래드재의 제조 및 기계적 특성

  • Shin, Beomsoo (Department of Materials Science and Engineering, Yonsei University) ;
  • Yoon, Sockyeon (Department of Materials Science and Engineering, Yonsei University) ;
  • Ha, Changseong (G-alloy Technology Co., Ltd.) ;
  • Yun, Seungkwan (G-alloy Technology Co., Ltd.) ;
  • Bae, Donghyun (Department of Materials Science and Engineering, Yonsei University)
  • 신범수 (연세대학교 신소재공학부) ;
  • 윤석연 (연세대학교 신소재공학부) ;
  • 하창성 ((주)지알로이테크놀로지) ;
  • 윤승관 ((주)지알로이테크놀로지) ;
  • 배동현 (연세대학교 신소재공학부)
  • Received : 2009.11.03
  • Published : 2010.02.20

Abstract

The Mg-Zn-RE alloy cladded with the thin Al1050 sheet was fabricated by means of a roll bonding process at $280^{\circ}C$.Microstructures and mechanical properties of the clad sheets were investigated. After heat treatment at $230^{\circ}C$ for 30 min, an Mg-rich diffusion layer with about $2{\mu}m$ in thickness was developed at the Mg and Al interface. Tensile tests were carried out in a temperature range up to $300^{\circ}C$. The clad sheet exhibits superior elongation to failure not only at room temperature but also at elevated temperatures compared with those of the Mg alloy sheet. For the deformed specimens, interface debonding does not occur and the diffusion layer shows only a few cracks.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. M. M. Avedesian and H. Baker, ASM Speciality Handbook Magnesium and Magnesium alloys, p.7, ASM international, Materials Park. OH (1997)
  2. G. S. Cole and A. M. Sherman, Mater. Charact. 35, 3 (1995) https://doi.org/10.1016/1044-5803(95)00063-1
  3. Y. Kojima, Mater. Trans. 42, 1154 (2001) https://doi.org/10.2320/matertrans.42.1154
  4. H. Haferkamp, R. Boehm, U. Holzkamp, C. Jaschick, V. Kaese, and M. Niemeyer, Mater. Trans. 42, 1160 (2001) https://doi.org/10.2320/matertrans.42.1160
  5. Jian-Wei Chang, Peng-Huai Fu, Xing-Wu Guo, Li-Ming Peng, and Wen-Jiang Ding, Corros. Sci. 49, 2612 (2007) https://doi.org/10.1016/j.corsci.2006.12.011
  6. Ming-Chun Zhao, Ming Liu, Guangling Song, and Andrej Atrens, Corros. Sci. 50, 1939 (2008) https://doi.org/10.1016/j.corsci.2008.04.010
  7. Jongjin Jeon, Sangwon Lee, Byeongho Kim, Bonggyu Park, Yongho Park, and Ikmin Park, J. Kor. Inst. Met. & Mater. 46, 304 (2008)
  8. Chunhong Zhang, Xiaomei Huang, Milin Zhang, Lili Gao, and Reizhi Wu, Mater. Lett. 62, 2177 (2008) https://doi.org/10.1016/j.matlet.2007.11.044
  9. Hiroaki Matsumoto, Sadao Watanabe, and Shuji Hanada, J. Mater. Pro. Tec. 169, 9 (2005) https://doi.org/10.1016/j.jmatprotec.2005.03.005
  10. X. B. Liu, R. S. Chen, and E. H. Han, J. Mater. Pro. Tec. 209, 4675 (2009) https://doi.org/10.1016/j.jmatprotec.2008.11.034
  11. Ming-Che Chen, Chih-Chun Hsieh, and Weite Wu, Met. Mater. Int. 13, 201 (2007) https://doi.org/10.1007/BF03027805
  12. Jan Bohlen, Marcus R. N$\"{u}$rnberg, Jeremy W. Senn, Dietmar Letzig, and Sean R. Agnew, Acta. Mater. 55, 2101 (2007) https://doi.org/10.1016/j.actamat.2006.11.013
  13. Kerstin Hantzsche, Joachim Wendt, Karl Ulrich Kainer, Jan Bohlen, and Dietmar Letzig, JOM. 61, 38 (2009)
  14. T. Mori and S. Kurimoto, J. Mater. Pro. Tec. 56, 242 (1996) https://doi.org/10.1016/0924-0136(95)01838-7
  15. J. E. Lee, D. H. Bae, W. S. Chung, K. H. Kim, J. H. Lee, and Y. R. Cho, J. Mater. Pro. Tec. 187, 546 (2007) https://doi.org/10.1016/j.jmatprotec.2006.11.121
  16. Yasumasa Chino, Katsuya Kimura, and Mamoru Mabuchi, Acta. Mater. 57, 1476 (2009) https://doi.org/10.1016/j.actamat.2008.11.033