• Title/Summary/Keyword: Mg and Pi

Search Result 238, Processing Time 0.024 seconds

Beneficial effects of andrographolide in a rat model of autoimmune myocarditis and its effects on PI3K/Akt pathway

  • Zhang, Qi;Hu, Li-qun;Li, Hong-qi;Wu, Jun;Bian, Na-na;Yan, Guang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.2
    • /
    • pp.103-111
    • /
    • 2019
  • The study is to investigate effects of andrographolide on experimental autoimmune myocarditis (EAM). Lewis rats were immunized on day 0 with porcine cardiac myosin to establish EAM. The EAM rats were treated with either andrographolide (25, 50, 100 mg/kg/day) or vehicle for 21 days. An antigen-specific splenocytes proliferation assay was performed by using the cells from control rats immunized with cardiac myosin. Survival rates, myocardial pathology and myocardial functional parameters (left ventricle end-diastolic pressure, ${\pm}dP/dt$ and left ventricular internal dimension) of EAM rats received andrographolide were significantly improved. Andrographolide treatment caused an decrease in the infiltration of $CD3^+$ and $CD14^+$ positive cells in myocardial tissue. Moreover, andrographolide treatment caused a reduction in the plasma levels of tumor necrosis factor-alpha, interleukin-17 (IL-17) and myosin-antibody, and an increase in the level of IL-10 in EAM rats. Oral administration of andrographolide resulted in the decreased expression of p-PI3K, p-Akt without any change of PI3K and Akt. Further results indicate andrographolide significantly inhibited myosin-induced proliferation in splenocytes, and this effect was inhibited by co-treatment of SC79 (Akt activator). Our data indicate andrographolide inhibits development of EAM, and this beneficial effect may be due to powerful anti-inflammatory activity and inhibitory effect on PI3K/Akt pathway.

Antitumor and Immunostimulating Activities of Acanthopanax sessiliflorus Fruits

  • Lee, Sang-Hyun;Lee, Yeon-Sil;Jung, Sang-Hoon;Ji, Jun;Shin, Kuk-Hyun;Kim, Bak-Kwang;Kang, Sam-Sik
    • Natural Product Sciences
    • /
    • v.9 no.2
    • /
    • pp.112-116
    • /
    • 2003
  • The antitumor and immunostimulating activities of Acanthopanax sessiliflorus fruits were investigated. Polysaccharide isolated from this plant, when administered consecutively for 9 days at 50 and 100 mg/kg i.p. in mice, caused a significant increase in the life span and a significant decrease in the tumor weight and volume in mice inoculated with Sarcoma-180 tumor cells. Polysaccharide was also demonstrated to exhibit phagocytosis-enhancing activity as measured by the carbon clearance in mice. Polysaccharide, when administered i.p. at 50 and 100 mg/kg/day for 3 consecutive days, exhibited a significant RCtr/RCc [the rate of regression coefficient of the animals teated (RCtr) to that of the control (RCc)], being 1.44 (PI = 1), 1.52 (PI = 2) which was approximately the same with that of enhancement of phagocytosis, its potency as expressed by the regression coefficient ratio of zymosan (RCtr/RCc = 1.55, PI = 2), a typical phagocytosis enhancer. Polysaccharide also caused a significant increase in the acid phosphatase activity representing lysosomal enzymes in macrophages at 1-100 ig/ml in vitro in compliance with in vivo results. These results suggest that the antitumor activity of polysaccharide might be related to the immunostimulating function.

pH, Alkaline Earth Metal Ion Effects and Miscibility with Hexadecanol on the Monolayer of Palmitic Acid at the Air-Water Interface (기-액 계면에서 Palmitic Acid 단분자막에 대한 pH, 알칼리토금속 이온의 영향 및 Hexadecanol 분자와의 섞임성)

  • Jong-Jae Chung;Byung-Il Seo;Hai-Won Lee;Min-Young Ju
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.3
    • /
    • pp.294-301
    • /
    • 1993
  • ${\pi}$-A isotherms of the Palmitic acid(PA) with increasing pH shifted to the low area/molecule due to the dissociation of PA at the air-water interface. More condensation of PA monolayers occurred by the addition of Mg$^{2+}$, Ca$^{2+}$ and Ba$^{2+}$ ion in subphase. This condensing effect was increased with increasing the concentration of these ions. Due to the interaction with each ion, PA were formed Mg, Ca, Ba-Palmitate complex. The binding structure between alkaline earth ion and carboxylate ligand in PA has been identified by IR spectrometry. The order of condensing effect of alkaline earth ions at pH 8 was Ca$^{2+}$ > Ba$^{2+}$+ > Mg$^{2+}$. The condensing effect except for Mg$^{2+}$ decreased with increasing atomic number. Whereas, the condensing effect in pure water system decreased with decreasing atomic number in the sequence: Ba$^{2+}$ > Ca$^{2+}$ > Mg$^{2+}$. The miscibility of binary system of PA and hexadecanol in monolayer showed that the miscibility was good for the pure water system. But, in the buffered pH 8 system, bad miscibility was found.

  • PDF

The non-saponin fraction of Korean Red Ginseng (KGC05P0) decreases glucose uptake and transport in vitro and modulates glucose production via down-regulation of the PI3K/AKT pathway in vivo

  • Park, Soo-Jeung;Lee, Dasom;Kim, Dakyung;Lee, Minhee;In, Gyo;Han, Sung-Tai;Kim, Sung Won;Lee, Mi-Hyang;Kim, Ok-Kyung;Lee, Jeongmin
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.362-372
    • /
    • 2020
  • Background: The non-saponin fraction of Korean Red Ginseng has been reported to have many biological activities. However, the effect of this fraction on anti-diabetic activity has not been elucidated in detail. In this study, we investigated the effects of KGC05P0, a non-saponin fraction of Korean Red Ginseng, on anti-diabetic activity in vitro and in vivo. Methods: We measured the inhibition of commercially obtained α-glucosidase and α-amylase activities in vitro and measured the glucose uptake and transport rate in Caco-2 cells. C57BL/6J mice and C57BLKS/Jdb/db (diabetic) mice were fed diets with or without KGC05P0 for eight weeks. To perform the experiments, the groups were divided as follows: normal control (C57BL/6J mice), db/db control (C57BLKS/Jdb/db mice), positive control (inulin 400 mg/kg b.w.), low (KGC05P0 100 mg/kg b.w.), medium (KGC05P0 200 mg/kg b.w.), and high (KGC05P0 400 mg/kg b.w.). Results: KGC05P0 inhibited α-glucosidase and α-amylase activities in vitro, and decreased glucose uptake and transport rate in Caco-2 cells. In addition, KGC05P0 regulated fasting glucose level, glucose tolerance, insulin, HbA1c, carbonyl contents, and proinflammatory cytokines in blood from diabetic mice and significantly reduced urinary glucose excretion levels. Moreover, we found that KGC05P0 regulated glucose production by down-regulation of the PI3K/AKT pathway, which inhibited gluconeogenesis. Conclusion: Our study thereby demonstrated that KGC05P0 exerted anti-diabetic effects through inhibition of glucose absorption and the PI3K/AKT pathway in in vitro and in vivo models of diabetes. Our results suggest that KGC05P0 could be developed as a complementary food to help prevent T2DM and its complications.

Effects of High Glucose on Na,K-ATPase and Na/glucose Cotransporter Activity in Primary Rabbit Kidney Proximal Tubule Cells

  • Han, Ho-Jae
    • The Korean Journal of Physiology
    • /
    • v.29 no.1
    • /
    • pp.69-80
    • /
    • 1995
  • Renal proximal tubular hypertrophy and hyperfunction are known to be early manifestations of experimental and human diabetes. As the hypertrophy and hyperfunction have been suggested to be central components in the progression to renal failure, an understanding of their underlying causes is potentially important for the development of therapy. A primary rabbit kidney proximal tubule cell culture system was utilized to evaluate the possibility that the renal proximal tubular hypertrophy and hyperfunction observed in vivo in diabetes mellitus, can be attributed to effects of elevated glucose levels on membrane transport systems. Primary cultures of rabbit proximal tubules, which achieved confluence at 10 days, exhibited brush-border characteristics typical of proximal tubular cells. Northern analysis indicated $2.2{\sim}2.3$ and 2.0 kb Na/glucose cotransporter RNA species appeared in fresh and cultured proximal tubule cells after confluence, repectively. The cultured cells showed reduced Na/glucose cotransporter activity compared to fresh proximal tubules. Primary cultured proximal tubule cells incubated in medium containing 20 mM glucose have reduced ${\alpha}-MG$ transport compared to cells grown in 5 mM glucose. In the proximal tubule cultures incubated in medium containing 5 mM or 20 mM glucose, phlorizin at 0.5 mM inhibited 0.5 mM ${\alpha}-MG$ uptake by 84.35% or 91.85%, respectively. The uptake of 0.5 mM ${\alpha}-MG$ was similarly inhibited by 0.1 mM ouabain (41.97% or 48.03% inhibition was observed, respectively). In addition, ${\alpha}-MG$ uptake was inhibited to a greater extent when $Na^{+}$ was omitted from the uptake buffer (81.86% or 86.73% inhibition was observed, respectively). In cell homogenates derived from the primary cells grown in 5 mM glucose medium, the specific activity of the Na/K-ATPase $(6.17{\pm}1.27\;{\mu}mole\;Pi/mg\;protein/hr)$ was 1.56 fold lower than the values in cell homogenates treated with 360 mg/dl D-glucose, 20 mM $(9.67{\pm}1.22\;{\mu}mole\;Pi/mg\;protein/hr)$. Total $Rb^{+}$ uptake occurred at a significantly higher rate (1.60 fold increase) in primary cultured rabbit kidney proximal tubule cell monolayers incubated in 20 mM glucose medium $(10.48{\pm}2.45\;nM/mg\;protein/min)$ as compared with parallel cultures in 5 mM glucose medium. $Rb^{+}$ uptake rate in 5 mM glucose medium was reduced by 28% when the cultures were incubated with 1 mM ouabain. The increase of the $Rb^{+}$ uptake by rabbit kidney proximal tubule cells in 20 mM glucose could be attributed primarily to an increase in the rate of ouabain-sensitive $Rb^{+}$ uptake $(5\;mM\;to\;20\;mM;\;4.68{\pm}0.85\;to\;8.38{\pm}1.37\;nM/mg\;protein/min)$. In conclusion, the activity of the renal proximal tubular Na,K-ATPase is elevated in high glucose concentration. In contrast, the activity of the Nafglucose cotransport system is inhibited.

  • PDF

Effects of Insulin and IGFS on Growth and Functional Differentiation in Primary Cultured Rabbit Kidney Proximal Tubule Cells -Growth and membrane transport-

  • Han, Ho-Jae;Park, Kwon-Moo
    • The Korean Journal of Physiology
    • /
    • v.29 no.2
    • /
    • pp.191-202
    • /
    • 1995
  • The purpose of this study was to compare effects of insulin and IGFs on growth, apical membrane enzyme activities and membrane transport systems of primary cultured rabbit kidney proximal tubule cells. Results were as follows: 1. Insulin and IGF-I produced significant growth stimulatory effects at $5{\times}10^{-10}M.\;IGF-II(5×10^{-10}\;M)$ did not stimulate significant cell growth. 2. Insulin stimulated the phosphorylation of a 97 KD protein. It was difficult to determine whether this band represents insulin and/or the IGF-I receptor. 3. The activities of apical membrane enzymes (alkaline phosphatase, leucine aminopeptidase, and ${\gamma}-glutamyl \;transpeptidase)$ were observed to be diminished after the cells were placed in the culture environment. 4. The uptake of ${\alpha}-MG,$ Pi and Na was significantly increased in cells incubated with insulin or IGF-I, IGF-II had no effect on the uptake of these substrates. 5. Na-pump activity, as assayed by Rb uptake, was significantly increased in cells treated with insulin or IGFs. In conclusion, insulin and IGF-I exert stimulatory effects on growth and membrane transporter(glucose, Na, Pi, and Na-pump) activities in primary cultured rabbit kidney proximal tubule cells. IGF-II had no effect on cell growth and membrane transporter(glucose, Na and Pi) activities.

  • PDF

Isolation of Sphinin, an Inhibitor of Sphingomyelinase, from Streptomyces sp. F50970

  • LIM, SI-KYU;WAN PARK
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.655-660
    • /
    • 1999
  • Sphingomyelinase (SMase EC:3.l.4.l2) has been suggested to play important roles in the cell cycle, differentiation, apoptosis, inflammation, and the regulation of eukaryotic stress responses. SMase inhibitors may be a powerful tool to elucidate and regulate these cellular responses in which SMase involves. We first isolated an SMase inhibitor, named sphinin, from a strain of soil actinomycetes, F50970. Sphinin inhibited Mg/sup 2+/ -dependent neutral SMase from chicken embryo at 1.2 ㎍/㎖ of IC/sub 50/ Sphinin also inhibited acidic SMase, but it had no inhibitory activity on PI-PLC and PC-PLC, suggesting that sphinin is a specific inhibitor of SMase. The strain F50970 was identified as a Streptomyces sp. by its spiral spore chain, LL-diaminopimelic acid, menaquinone patterns of MK-9 (H'6) and MK-9 (H'8), FA-2c type of fatty acid pattern, and other morphological, physiological, and cultural characteristics.

  • PDF

31P NMR Spectroscopy Revealed Adenylate kinase-like Activity and Phosphotransferase-like Activity from F1-ATPase of Escherichia coli

  • Kim, Hyun-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.183-185
    • /
    • 2011
  • Adenylate kinase-like activity and phosphotransferase-like activity from $F_1$-ATPase of Escherichia coli was revealed by $^{31}P$ NMR spectroscopy. Incubation of F1-ATPase with ADP in the presence of $Mg^{2+}$ shows the appearance of $^{31}P$ resonances from AMP and Pi, suggesting generation of AMP and ATP by adenylate kinase-like activity and the subsequent hydrolysis to Pi. Incubation of $F_1$-ATPase with ADP in the presence of methanol shows additional peak from methyl phosphate, suggesting phosphotransferase-like activity of $F_1$-ATPase. Both adenylate kinase-like activity and phosphotransferase-like activity has not been reported from $F_1$-ATPase of Escherichia coli. $^{31}P$ NMR could be a valuable tool for the investigation of phosphorous related enzyme.

Effects of Gentiana scabra var. buergeri Extract on Toxoplasmastic Activity of Macrophages

  • Kang, Sung-Gu;Ryang, Yong-Suk;Kim, In-Sik
    • Biomedical Science Letters
    • /
    • v.9 no.2
    • /
    • pp.85-91
    • /
    • 2003
  • Gentiana scabra var. buergeri (G. scabra) is a herb known to have therapeutic effect in infection diseases. We studied cellular activation and antitoxoplasmosis in macrophages after G. scabra stimulation. Macrophage activation was detected by nitrite production. Macrophages were treated with G. scabra extracted with water or methanol. Maximal nitrite production was detected in macrophages after stimulation of G. scabra extract 0.1 mg/ml. Maximal nitrite concentration was 23.22 0.003 uM/L in macrophages after water extract of G. scabra and was 24.07 1.41 uM/L after methanol extract of G. scabra. Effect of G. scabra in the phagocytic capacity of macrophages was monitored by using PI (percentage of macrophage infected by T gondii) method. The minimum PI (42.5 2.31) was detected in macrophages treated by water extract of G. scabra 0.1 mg/ml before infection of T gondii. We also examined toxoplasmastatic capacity of macrophage using FI (fold increase) method. The minimum FI (4.46 1.16) was shown in macrophages after water extract of G. scabra 0.1 mg/ml pretreatment before infection. Under electron microscope, proliferation of T gondii was inhibited by extract of G. scabra treatment in macrophages and the mitochondrion and lysosomal vacuoles within cells were increased. Taken together, G. scabra extract activates macrophages and induces toxopalsmastatic activity after T gondii infection. It is suggested that G. scabra may be used as a therapeutic drug against toxoplasmosis.

  • PDF

Influences of the BUN and Creatinine Level by Krill (Euphausia superba) Meal and NaF Administration in Rats (Krill 분말 및 NaF 투여가 흰쥐의 BUN 및 Creatinine 농도에 미치는 영향)

  • Kim, Han-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.848-856
    • /
    • 2018
  • The aim of this study was to investigate the hematology and serum chemistry values on Sprague-Dawley rats, used krill (Euphausia superba) meal diet and sodium fluoride (NaF) for 5 weeks. Seven-week-old male rats were divided into five groups and fed experimental diets containing three krill meal contents, administrated orally 10 mg of NaF, basal diet group (BG), basal diet plus 10 mg of NaF group (BFG), 10.0% krill meal plus 10 mg of NaF group (KMF10), 20.0% krill meal plus 10 mg of NaF group (KMF20), and 30.0% krill meal plus 10 mg of NaF group (KMF30). Concentrations of non-esterified fatty acid (NEFA), blood urea nitrogen (BUN), creatinine in sera were significantly lower in the KMF10, KMF20, KMF30 than BFG (p<0.05). In uric acid concentration KMF10 showed no significant difference with the BFG group, was significantly lower than KMF20 and KMF30 (p<0.05). Total calcium (T-Ca) concentrations was all observed to be no significant difference, was increased with krill meal content (p<0.05). Phosphorus (Pi) concentration was no change in the content of krill meal. Accordingly, krill meal was considered to be effective in improving NEFA and BUN, creatinine, uric acid concentration.