• Title/Summary/Keyword: Mg alloy composite

Search Result 69, Processing Time 0.028 seconds

Creep Properties of Squeeze Infiltrated AS52 Mg/Al18B4O33w Composite (용탕가압침투 AS52 Mg/Al18B4O33w 복합재료의 크리프 특성)

  • Choi, Kye-Won;Park, Yong-Ha;Park, Bong-Gyu;Park, Yong-Ho;Park, Ik-Min;Cho, Kyung-Mox
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.7
    • /
    • pp.412-419
    • /
    • 2008
  • Creep behavior of the squeeze infiltrated AS52 Mg matrix composites reinforced with 15 vol% of aluminum borate whiskers($Al_{18}B_4O_{33}w$) fabricated squeeze infiltration method was investigated. Microstructure of the composites was observed as uniformly distributed reinforcement in the matrix without any particular defects of casting pores etc.. Creep test was carried out at the temperature of 150 and $200^{\circ}C$ under the applied stress range of 60~120 MPa. The creep resistance of the composite was significantly improved comparing with the unreinforced AS52 Mg alloy. The creep behavior of composites might be interpreted with the substructure invariant model successfully for the composite. Threshold stress of the composite exist for the creep deformation of the composite. The analysis of the creep behavior of the composite with threshold stress indicated that creep deformation was controlled by the lattice diffusion process of AS52 Mg matrix at given effective stresses and temperatures. Activation energy was also calculated to check lattice diffusion controlled creep behavior of the composite.

Investigation on the Sintering Behavior and Mechanical Properties of Al-Zn-Mg Alloy Powders Mixed with Al-Si-SiC Composite Powders (Al-Si-SiC 복합분말과 Al-Zn-Mg계 합금분말이 혼합된 분말의 소결 거동 및 기계적 특성연구)

  • Jang, Gwang-Joo;Kim, Kyung Tae;Yang, Sangsun;Kim, Yong-Jin;Park, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.21 no.6
    • /
    • pp.460-466
    • /
    • 2014
  • Al-Si-SiC composite powders with intra-granular SiC particles were prepared by a gas atomization process. The composite powders were mixed with Al-Zn-Mg alloy powders as a function of weight percent. Those mixture powders were compacted with the pressure of 700 MPa and then sintered at the temperature of $565-585^{\circ}C$. T6 heat treatment was conducted to increase their mechanical properties by solid-solution precipitates. Each relative density according to the optimized sintering temperature of those powders were determined as 96% at $580^{\circ}C$ for Al-Zn-Mg powders (composition A), 97.9% at $575^{\circ}C$ for Al-Zn-Mg powders with 5 wt.% of Al-Si-SiC powders (composition B), and 98.2% at $570^{\circ}C$ for Al-Zn-Mg powders with 10 wt.% of Al-Si-SiC powders (composition C), respectively. Each hardness, tensile strength, and wear resistance test of those sintered samples was conducted. As the content of Al-Si-SiC powders increased, both hardness and tensile strength were decreased. However, wear resistance was increased by the increase of Al-Si-SiC powders. From these results, it was confirmed that Al-Si-SiC/Al-Zn-Mg composite could be highly densified by the sintering process, and thus the composite could have high wear resistance and tensile strength when the content of Al-Si-SiC composite powders were optimized.

Fabrication, Microstructure and Compression Properties of AZ31 Mg Foams

  • Zhao, Rui;Li, Yuxuan;Jeong, Seung-Reuag;Yue, Xuezheng;Hur, Bo-Young
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.314-319
    • /
    • 2011
  • Melt foaming method is one of cost-effective methods to make metal foam and it has been successfully applied to fabricate Mg foams. In this research, AZ31 Mg alloy ingot was used as a metal matrix, using AlCa granular as thickening agent and $CaCO_3$ powder as foaming agent, AZ31 Mg alloy foams were fabricated by melt-foaming method at different foaming temperatures. The porosity was above 41.2%~73.3%, pore size was between 0.38~1.52 mm, and homogenous pore structures were obtained. Microstructure and mechanical properties of the AZ31 Mg alloy foams were investigated by optical microscopy, SEM and UTM. The results showed that pore structure and pore distribution were much better than those fabricated at lower temperatures. The compression behavior of the AZ31 Mg alloy foam behaved as typical porous materials. As the foaming temperature increased from $660^{\circ}C$ to $750^{\circ}C$, the compressed strength also increased. The AZ31 Mg alloy foam with a foaming temperature of $720^{\circ}C$ had the best energy absorption. The energy absorption value of Mg foam was 15.52 $MJ/m^3$ at a densification strain of 52%. Furthermore, the high energy absorption efficiencies of the AZ31 Mg alloy foam kept at about 0.85 in the plastic plateau region, which indicates that composite foam possess a high energy absorption characteristic, and the Vickers hardness of AZ31 Mg alloy foam decreased as the foaming temperature increased.

A Study of Threshold stress during High Temperature Creep of $\textrm{BN}_f$/Al-5, wt% Mg Metal Matrix Composite (BN 입자 강화 Al-5wt% Mg 기지 복합재료의 고온 크립 변형에서의 임계응력 해석)

  • Song, M.H.;Kwon, H.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.187-191
    • /
    • 2000
  • High temperature creep behaviour of Al-5 wt% Mg alloy reinforced with 7.5% BN flakes was studied. The composite specimens showed two main creep characteristics : (1) the value of the apparent stress exponent of the composite was high and varied with applied stress (2) the apparent activation energy for creep was much larger than that for self-diffusion in aluminum The true stress exponent of the composite was set equal to 5. Temperature dependence of the threshold stress of the composite was very strong. Which could not be rationalized by allowing for the temperature dependence of the elastic modulus change. AIN particles which were incorporated into the Al matrix during fabrication of the composite by the PRIMEXTM method were found to be effective barriers to dislocation motion and to give rise the threshold stress during creep of the composite

  • PDF

Age-Hardening Behavior of SiCp Reinforced 6061 Aluminum Alloy Composites (SiCp/6061Al합금복합재료의 시효거동)

  • An, Haeng-Geun;Yu, Jeong-Hui;Kim, Seok-Won;U, Gi-Do
    • Korean Journal of Materials Research
    • /
    • v.10 no.12
    • /
    • pp.793-798
    • /
    • 2000
  • The age-hardening behavior of unreinforced 6061 Al alloy and SiCp/6061 Al alloy composites reinforced with different size of SiC particle (average diameter ; 0.7$\mu\textrm{m}$ and 7.0$\mu\textrm{m}$) was investigated by hardness measurement, calorimetric technique and transmission electron microscopy. At 17$0^{\circ}C$ isothermal aging treatment, the peak aging time of 0.7$\mu\textrm{m}$SiCp/6061Al alloy composite and 7.0$\mu\textrm{m}$SiCp/6061Al alloy composite is shorter than that of unreinforced 6061Al alloy, and the aging of 7.0$\mu\textrm{m}$SiCp/6061Al alloy composite is accelerated more than that of 0.7$\mu\textrm{m}$SiCp/6061Al alloy composite. This acceleration is due to the increase of dislocation density by the compositeness with SiCp and the SiC particle size. In the peak aged condition, the major strengthening phase of these materials is intermediate $\beta$ phase(Mg$_2$Si), and the activation energy for the formation of $\beta$ phase is considerably decreased by the compositeness with SiCp and the increasing of SiC Particle site.

  • PDF

Microstructure Control of Mg Alloy Powder Using a Repeated Extrusion Process (반복압출 공정을 이용한 금속분말의 미세조직 제어)

  • Kim, Jeong-Gon;Choi, Han-Shin;Kim, Taek-Soo
    • Journal of Powder Materials
    • /
    • v.16 no.6
    • /
    • pp.438-441
    • /
    • 2009
  • Mg-Cu composites were successively fabricated using a combination of rapid solidification and extrusion processes. In addition, the microstructural variation of the composite was investigated by performing the extrusion repeatedly. It resulted that the composite formed an uniform and dense structure by the extrusion, and the microstructure became fine as the extrusion conducted repeatedly. The microstructural variation was known to be dependent on the number of extrusion and the area reduction ratio. The tensile strength was also measured as a function of the microstructural variation.

Effects of Cu and Mg on Wear Properties of SiC Particulate Reinforced Al-Si Metal Matrix Composites (SiC 입자강화 Al-Si 복합재료의 내마멸성에 미치는 Cu , Mg의 영향)

  • Shim, Shang-Han;Chung, Yong-Keun;Park, In-Min
    • Journal of Korea Foundry Society
    • /
    • v.10 no.1
    • /
    • pp.43-49
    • /
    • 1990
  • The influences of Cu and Mg addition on wear properties of SiC particulate reinforced Al-Si metal(alloy) matrix composites were investigated. Metal matrix composites were prepared by combination of compocasting and hot pressing techniques. The main results obtained are as follows : 1) The composite with Mg addition exhibits letter wear resistance than that with Cu addition. It is considered that Mg addition improved wettability of matal matrix composite by the strong segregation to the SiC / Al matrix interface. 2) After homogenization treatment, it was found that the interfacial segregation of Mg was predominant, while that of Cu was not detected. 3) The SiC / Al-11Si eutectic composite exhibits better wear resistance than the SiC / Al-6Si hypoeutectic composite does. 4) It seems that the increase in the amount of Mg addition affects on the uniform dispersion of SiC particulates, on the refinement of microstructure and on age hardening and these effects cause wear resistance improvement of composites.

  • PDF

Wear Resistance Characteristics of Thermal Sprayed AlSiMg/SiC Composite Coatings on Aluminum Engine Cylinder Bores (Aluminum Engine Cylinder Bore 적용 AlSiMg/SiC 복합 용사피막의 내마모 특성)

  • 양병모;변응선;박경채
    • Journal of Welding and Joining
    • /
    • v.17 no.6
    • /
    • pp.62-69
    • /
    • 1999
  • The advantages of Thermal sprayed coatings as a replacement for cast iron liners are reduced weight, better heat transfer and reduced cost. One of the most important performance attributes of a cylinder bore coating is its wear resistance, since it must survive the abrasive sliding of both the piston rings and the piston skirt. In this study, composite powders were prepared by ball milling of Al-13Si-3Mg(wt%) alloy with SiC particles. The concentrations of SiC were 40 and 60wt%. The composite powders were sprayed using Metco-9MB plasma torch. Plasma sprayed coatings were heat-treated at 500℃ for 3 hours. The wear resistances of the plasma sprayed coatings were found to improve with heat treatment and superior to the commercially available G.C.I.(gray cast iron). AlSiMg-40SiC heat-treated coatings showed the best wear resistance in this study.

  • PDF

Fabrication of $Al_2O_{3p}/Al$ composites by in-situ Reaction Process of Molten Al (In-situ 반응에 의한 $Al_2O_{3p}/Al$기 복합재료의 제조)

  • 김재동;정해용;고성위
    • Composites Research
    • /
    • v.12 no.3
    • /
    • pp.36-44
    • /
    • 1999
  • The fabrication process of $Al_2O_{3p}/Al$ composite by in-situ process was investigated. The effects of processing variables such as addition type and content of Mg, processing temperature and time on the infiltration behavior of molten Al, microstructure and hardness were investigated. When the pure Al was infiltrated into mixtures of Mg and $Al_2O_3l$ powder, processing temperature required to spontaneous infiltration was decreased, and the content of Mg was the most powerful variable for infiltration of molten Al. But when the Al-Mg alloy was infiltrated into $Al_2O_3l$ particles, infiltration ratio indicated nearly same value regardless of Mg content in alloy and processing temperature, and critical processing temperature required to spontaneous infiltration was $800^{\circ}C$. The $Al_2O_{3p}/Al$ composites which were fabricated by mixtures of Mg and $Al_2O_3l$ powders resulted in high hardness value, but hardness values were scattered due to non uniform dispersion of $Al_2O_3l$ particles by excessive reaction of Mg.

  • PDF

Analysis of various composite patches effect on mechanical properties of notched Al-Mg plate

  • Meran, Ahmad P.;Samanci, Ahmet
    • Steel and Composite Structures
    • /
    • v.25 no.6
    • /
    • pp.685-692
    • /
    • 2017
  • In this study, the effect of various adhesively bonded composite patches on mechanical properties of notched Al-Mg alloy plates was analyzed. For this purpose firstly, the un-notched and notched specimens were fabricated from 5086 Al-Mg alloys which have been used in armor-plated military vehicles. The surface notches as a flaw were machined with circular cutting tool to form notch aspect ratio a/c=0.15 and notch-to-thickness ratios a/t=0.5 in the radial direction on the test specimens. Then, various composite patches which reinforced by glass, carbon and Kevlar fibers were bonded adhesively at elliptically surface notches. Finally, experimental measurements conducted by applying tensile static loading. The experimental results showed that repairing with composite patches with order of carbon, glass and Kevlar fibers have remarkable effect on tensile strength of the notched plate. Also the finite element models were developed using Abaqus/Explicit code to predict the tensile strength and elongation of unrepaired notched specimen and specimen repaired by carbon fiber composite patch. The comparison between numerical and experimental results showed good agreement between them and proved the accuracy of numerical modeling.