• Title/Summary/Keyword: Metropolis algorithm

Search Result 81, Processing Time 0.022 seconds

Bayesian Modeling of Mortality Rates for Colon Cancer

  • Kim Hyun-Joong
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.1
    • /
    • pp.177-190
    • /
    • 2006
  • The aim of this study is to propose a Bayesian model for fitting mortality rate of colon cancer. For the analysis of mortality rate of a disease, factors such as age classes of population and spatial characteristics of the location are very important. The model proposed in this study allows the age class to be a random effect in addition to its conventional role as the covariate of a linear regression, while the spatial factor being a random effect. The model is fitted using Metropolis-Hastings algorithm. Posterior expected predictive deviances, standardized residuals, and residual plots are used for comparison of models. It is found that the proposed model has smaller residuals and better predictive accuracy. Lastly, we described patterns in disease maps for colon cancer.

Strength Prediction and Optimum Design of Internally Ring-Stiffened Tubular X-and T-Joints (내부 환보강 X형 및 T형 관이음부의 강도산정과 최적설계)

  • Cho, Hyun-Man;Ryu, Yeon-Sun;Lee, Hyun-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.315-320
    • /
    • 2007
  • An effective reinforcement method for steel tubular joints having a large chord diameter is the use of internal ring stiffeners. This paper presents the results of a numerical study on the static strength of internally ring-stiffened tubular X- and T-joints subjected to brace axial compression loading. Nonlinear finite element analyses are used to compute the joint strength. The influence of geometrical parameters has been studied and the maximum reinforcement effect of a ring stiffener has been evaluated. A strength ratio is defined. by the ratio of ring-stiffened joint strength to unstiffened joint strength, and an equation for this strength ratio is derived by regression analysis. Design optimization for ring stiffener of tubular joints is carried out using metropolis genetic algorithm.

  • PDF

Bayesian Multiple Change-Point Estimation of Multivariate Mean Vectors for Small Data

  • Cheon, Sooyoung;Yu, Wenxing
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.6
    • /
    • pp.999-1008
    • /
    • 2012
  • A Bayesian multiple change-point model for small data is proposed for multivariate means and is an extension of the univariate case of Cheon and Yu (2012). The proposed model requires data from a multivariate noncentral $t$-distribution and conjugate priors for the distributional parameters. We apply the Metropolis-Hastings-within-Gibbs Sampling algorithm to the proposed model to detecte multiple change-points. The performance of our proposed algorithm has been investigated on simulated and real dataset, Hanwoo fat content bivariate data.

An evolutionary approach for structural reliability

  • Garakaninezhad, Alireza;Bastami, Morteza
    • Structural Engineering and Mechanics
    • /
    • v.71 no.4
    • /
    • pp.329-339
    • /
    • 2019
  • Assessment of failure probability, especially for a complex structure, requires a considerable number of calls to the numerical model. Reliability methods have been developed to decrease the computational time. In this approach, the original numerical model is replaced by a surrogate model which is usually explicit and much faster to evaluate. The current paper proposed an efficient reliability method based on Monte Carlo simulation (MCS) and multi-gene genetic programming (MGGP) as a robust variant of genetic programming (GP). GP has been applied in different fields; however, its application to structural reliability has not been tested. The current study investigated the performance of MGGP as a surrogate model in structural reliability problems and compares it with other surrogate models. An adaptive Metropolis algorithm is utilized to obtain the training data with which to build the MGGP model. The failure probability is estimated by combining MCS and MGGP. The efficiency and accuracy of the proposed method were investigated with the help of five numerical examples.

Bayesian Multiple Change-Point for Small Data (소량자료를 위한 베이지안 다중 변환점 모형)

  • Cheon, Soo-Young;Yu, Wenxing
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.2
    • /
    • pp.237-246
    • /
    • 2012
  • Bayesian methods have been recently used to identify multiple change-points. However, the studies for small data are limited. This paper suggests the Bayesian noncentral t distribution change-point model for small data, and applies the Metropolis-Hastings-within-Gibbs Sampling algorithm to the proposed model. Numerical results of simulation and real data show the performance of the new model in terms of the quality of the resulting estimation of the numbers and positions of change-points for small data.

A Bayesian Approach for Record Value Statistics Model Using Nonhomogeneous Poisson Process

  • Kiheon Choi;Hee chual Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.1
    • /
    • pp.259-269
    • /
    • 1997
  • Bayesian inference for a record value statistics(RVS) model of nonhomogeneous Poisson process is considered. We seal with Bayesian inference for double exponential, Gamma, Rayleigh, Gumble RVS models using Gibbs sampling and Metropolis algorithm and also explore Bayesian computation and model selection.

  • PDF

Bayesian Estimation of the Two-Parameter Kappa Distribution

  • Oh, Mi-Ra;Kim, Sun-Worl;Park, Jeong-Soo;Son, Young-Sook
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.2
    • /
    • pp.355-363
    • /
    • 2007
  • In this paper a Bayesian estimation of the two-parameter kappa distribution was discussed under the noninformative prior. The Bayesian estimators are obtained by the Gibbs sampling. The generation of the shape parameter and scale parameter in the Gibbs sampler is implemented using the adaptive rejection Metropolis sampling algorithm of Gilks et al. (1995). A Monte Carlo study showed that the Bayesian estimators proposed outperform other estimators in the sense of mean squared error.

DEFAULT BAYESIAN INFERENCE OF REGRESSION MODELS WITH ARMA ERRORS UNDER EXACT FULL LIKELIHOODS

  • Son, Young-Sook
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.2
    • /
    • pp.169-189
    • /
    • 2004
  • Under the assumption of default priors, such as noninformative priors, Bayesian model determination and parameter estimation of regression models with stationary and invertible ARMA errors are developed under exact full likelihoods. The default Bayes factors, the fractional Bayes factor (FBF) of O'Hagan (1995) and the arithmetic intrinsic Bayes factors (AIBF) of Berger and Pericchi (1996a), are used as tools for the selection of the Bayesian model. Bayesian estimates are obtained by running the Metropolis-Hastings subchain in the Gibbs sampler. Finally, the results of numerical studies, designed to check the performance of the theoretical results discussed here, are presented.

Bayesian Inference for Switching Mean Models with ARMA Errors

  • Son, Young Sook;Kim, Seong W.;Cho, Sinsup
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.3
    • /
    • pp.981-996
    • /
    • 2003
  • Bayesian inference is considered for switching mean models with the ARMA errors. We use noninformative improper priors or uniform priors. The fractional Bayes factor of O'Hagan (1995) is used as the Bayesian tool for detecting the existence of a single change or multiple changes and the usual Bayes factor is used for identifying the orders of the ARMA error. Once the model is fully identified, the Gibbs sampler with the Metropolis-Hastings subchains is constructed to estimate parameters. Finally, we perform a simulation study to support theoretical results.

Bayesian Approach for Software Reliability Models (소프트웨어 신뢰모형에 대한 베이지안 접근)

  • Choi, Ki-Heon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.10 no.1
    • /
    • pp.119-133
    • /
    • 1999
  • A Markov Chain Monte Carlo method is developed to compute the software reliability model. We consider computation problem for determining of posterior distibution in Bayseian inference. Metropolis algorithms along with Gibbs sampling are proposed to preform the Bayesian inference of the Mixed model with record value statistics. For model determiniation, we explored the prequential conditional predictive ordinate criterion that selects the best model with the largest posterior likelihood among models using all possible subsets of the component intensity functions. To relax the monotonic intensity function assumptions. A numerical example with simulated data set is given.

  • PDF