• Title/Summary/Keyword: Metric Learning

Search Result 141, Processing Time 0.03 seconds

A Comparison of Distance Metric Learning Methods for Face Recognition (얼굴인식을 위한 거리척도학습 방법 비교)

  • Suvdaa, Batsuri;Ko, Jae-Pil
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.6
    • /
    • pp.711-718
    • /
    • 2011
  • The k-Nearest Neighbor classifier that does not require a training phase is appropriate for a variable number of classes problem like face recognition, Recently distance metric learning methods that is trained with a given data set have reported the significant improvement of the kNN classifier. However, the performance of a distance metric learning method is variable for each application, In this paper, we focus on the face recognition and compare the performance of the state-of-the-art distance metric learning methods, Our experimental results on the public face databases demonstrate that the Mahalanobis distance metric based on PCA is still competitive with respect to both performance and time complexity in face recognition.

User Bias Drift Social Recommendation Algorithm based on Metric Learning

  • Zhao, Jianli;Li, Tingting;Yang, Shangcheng;Li, Hao;Chai, Baobao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.3798-3814
    • /
    • 2022
  • Social recommendation algorithm can alleviate data sparsity and cold start problems in recommendation system by integrated social information. Among them, matrix-based decomposition algorithms are the most widely used and studied. Such algorithms use dot product operations to calculate the similarity between users and items, which ignores user's potential preferences, reduces algorithms' recommendation accuracy. This deficiency can be avoided by a metric learning-based social recommendation algorithm, which learns the distance between user embedding vectors and item embedding vectors instead of vector dot-product operations. However, previous works provide no theoretical explanation for its plausibility. Moreover, most works focus on the indirect impact of social friends on user's preferences, ignoring the direct impact on user's rating preferences, which is the influence of user rating preferences. To solve these problems, this study proposes a user bias drift social recommendation algorithm based on metric learning (BDML). The main work of this paper is as follows: (1) the process of introducing metric learning in the social recommendation scenario is introduced in the form of equations, and explained the reason why metric learning can replace the click operation; (2) a new user bias is constructed to simultaneously model the impact of social relationships on user's ratings preferences and user's preferences; Experimental results on two datasets show that the BDML algorithm proposed in this study has better recommendation accuracy compared with other comparison algorithms, and will be able to guarantee the recommendation effect in a more sparse dataset.

Collaborative Similarity Metric Learning for Semantic Image Annotation and Retrieval

  • Wang, Bin;Liu, Yuncai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.1252-1271
    • /
    • 2013
  • Automatic image annotation has become an increasingly important research topic owing to its key role in image retrieval. Simultaneously, it is highly challenging when facing to large-scale dataset with large variance. Practical approaches generally rely on similarity measures defined over images and multi-label prediction methods. More specifically, those approaches usually 1) leverage similarity measures predefined or learned by optimizing for ranking or annotation, which might be not adaptive enough to datasets; and 2) predict labels separately without taking the correlation of labels into account. In this paper, we propose a method for image annotation through collaborative similarity metric learning from dataset and modeling the label correlation of the dataset. The similarity metric is learned by simultaneously optimizing the 1) image ranking using structural SVM (SSVM), and 2) image annotation using correlated label propagation, with respect to the similarity metric. The learned similarity metric, fully exploiting the available information of datasets, would improve the two collaborative components, ranking and annotation, and sequentially the retrieval system itself. We evaluated the proposed method on Corel5k, Corel30k and EspGame databases. The results for annotation and retrieval show the competitive performance of the proposed method.

Effect of University Students' Type of Self-Determination and Academic Emotions on Learning Community Participant Competence: Focusing on Students Majoring in Early-Childhood Education (대학생의 자기결정동기 유형 및 학업정서가 학습공동체 참여 역량에 미치는 영향: 유아 및 아동 관련 전공자 대상으로)

  • Ahn, HyoJin;Lee, HyunJung
    • Human Ecology Research
    • /
    • v.55 no.5
    • /
    • pp.527-538
    • /
    • 2017
  • This study examines the effects of university students' types of self-determination and academic emotions on their learning community participant competence. The subjects were 234 early-childhood preservice teachers attending a university or college in the Kyonggi and Incheon area of Korea. The first metric created by Bak et al. (2005) measured early-childhood preservice teachers' types of self-determination. The second metric developed by Kim & Kim (2016) measured their levels of learning community participant competence. The thirds metric, originally developed by Kim (2012) and So (2010), was modified by Chung (2015) to measure the academic emotions of subjects. The test results were analyzed by correlation and multi-regression techniques using SPSS 21 for Windows. The findings were as follows. First, there were significant relationships between the subjects' types of self-determination and the levels of learning community participant competence. Second, there were significant relationships between the subjects' academic positive and negative emotions and the levels of learning community participant competence. Third, the subjects' levels of learning community participant competence were perceived differently according to their academic emotions. Based on these results, implications pertaining to academic emotions on learning community participant competence are suggested.

Discriminant Metric Learning Approach for Face Verification

  • Chen, Ju-Chin;Wu, Pei-Hsun;Lien, Jenn-Jier James
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.742-762
    • /
    • 2015
  • In this study, we propose a distance metric learning approach called discriminant metric learning (DML) for face verification, which addresses a binary-class problem for classifying whether or not two input images are of the same subject. The critical issue for solving this problem is determining the method to be used for measuring the distance between two images. Among various methods, the large margin nearest neighbor (LMNN) method is a state-of-the-art algorithm. However, to compensate the LMNN's entangled data distribution due to high levels of appearance variations in unconstrained environments, DML's goal is to penalize violations of the negative pair distance relationship, i.e., the images with different labels, while being integrated with LMNN to model the distance relation between positive pairs, i.e., the images with the same label. The likelihoods of the input images, estimated using DML and LMNN metrics, are then weighted and combined for further analysis. Additionally, rather than using the k-nearest neighbor (k-NN) classification mechanism, we propose a verification mechanism that measures the correlation of the class label distribution of neighbors to reduce the false negative rate of positive pairs. From the experimental results, we see that DML can modify the relation of negative pairs in the original LMNN space and compensate for LMNN's performance on faces with large variances, such as pose and expression.

Bio-Inspired Object Recognition Using Parameterized Metric Learning

  • Li, Xiong;Wang, Bin;Liu, Yuncai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.4
    • /
    • pp.819-833
    • /
    • 2013
  • Computing global features based on local features using a bio-inspired framework has shown promising performance. However, for some tough applications with large intra-class variances, a single local feature is inadequate to represent all the attributes of the images. To integrate the complementary abilities of multiple local features, in this paper we have extended the efficacy of the bio-inspired framework, HMAX, to adapt heterogeneous features for global feature extraction. Given multiple global features, we propose an approach, designated as parameterized metric learning, for high dimensional feature fusion. The fusion parameters are solved by maximizing the canonical correlation with respect to the parameters. Experimental results show that our method achieves significant improvements over the benchmark bio-inspired framework, HMAX, and other related methods on the Caltech dataset, under varying numbers of training samples and feature elements.

Gait Recognition Based on GF-CNN and Metric Learning

  • Wen, Junqin
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1105-1112
    • /
    • 2020
  • Gait recognition, as a promising biometric, can be used in video-based surveillance and other security systems. However, due to the complexity of leg movement and the difference of external sampling conditions, gait recognition still faces many problems to be addressed. In this paper, an improved convolutional neural network (CNN) based on Gabor filter is therefore proposed to achieve gait recognition. Firstly, a gait feature extraction layer based on Gabor filter is inserted into the traditional CNNs, which is used to extract gait features from gait silhouette images. Then, in the process of gait classification, using the output of CNN as input, we utilize metric learning techniques to calculate distance between two gaits and achieve gait classification by k-nearest neighbors classifiers. Finally, several experiments are conducted on two open-accessed gait datasets and demonstrate that our method reaches state-of-the-art performances in terms of correct recognition rate on the OULP and CASIA-B datasets.

A Design of Content-based Metric Learning Model for HR Matching (인재매칭을 위한 내용기반 척도학습모형의 설계)

  • Song, Hee Seok
    • Journal of Information Technology Applications and Management
    • /
    • v.27 no.6
    • /
    • pp.141-151
    • /
    • 2020
  • The job mismatch between job seekers and SMEs is becoming more and more intensifying with the serious difficulties in youth employment. In this study, a bi-directional content-based metric learning model is proposed to recommend suitable jobs for job seekers and suitable job seekers for SMEs, respectively. The proposed model not only enables bi-directional recommendation, but also enables HR matching without relearning for new job seekers and new job offers. As a result of the experiment, the proposed model showed superior performance in terms of precision, recall, and f1 than the existing collaborative filtering model named NCF+GMF. The proposed model is also confirmed that it is an evolutionary model that improves performance as training data increases.

Forward Viterbi Decoder applied LVQ Network (LVQ Network를 적용한 순방향 비터비 복호기)

  • Park Ji woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.12A
    • /
    • pp.1333-1339
    • /
    • 2004
  • In IS-95 and IMT-2000 systems using variable code rates and constraint lengths, this paper limits code rate 1/2 and constraint length 3 and states the effective reduction of PM(Path Metric) and BM(Branch Metric) memories and arithmetic comparative calculations with appling PVSL(Prototype Vector Selecting Logic) and LVQ(Learning Vector Quantization) in neural network to simplify systems and to decode forwardly. Regardless of extension of constraint length, this paper presents the new Vierbi decoder and the appied algorithm because new structure and algorithm can apply to the existing Viterbi decoder using only uncomplicated application and verifies the rationality of the proposed Viterbi decoder through VHDL simulation and compares the performance between the proposed Viterbi decoder and the existing.

Comparative Evaluation of Chest Image Pneumonia based on Learning Rate Application (학습률 적용에 따른 흉부영상 폐렴 유무 분류 비교평가)

  • Kim, Ji-Yul;Ye, Soo-Young
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.5
    • /
    • pp.595-602
    • /
    • 2022
  • This study tried to suggest the most efficient learning rate for accurate and efficient automatic diagnosis of medical images for chest X-ray pneumonia images using deep learning. After setting the learning rates to 0.1, 0.01, 0.001, and 0.0001 in the Inception V3 deep learning model, respectively, deep learning modeling was performed three times. And the average accuracy and loss function value of verification modeling, and the metric of test modeling were set as performance evaluation indicators, and the performance was compared and evaluated with the average value of three times of the results obtained as a result of performing deep learning modeling. As a result of performance evaluation for deep learning verification modeling performance evaluation and test modeling metric, modeling with a learning rate of 0.001 showed the highest accuracy and excellent performance. For this reason, in this paper, it is recommended to apply a learning rate of 0.001 when classifying the presence or absence of pneumonia on chest X-ray images using a deep learning model. In addition, it was judged that when deep learning modeling through the application of the learning rate presented in this paper could play an auxiliary role in the classification of the presence or absence of pneumonia on chest X-ray images. In the future, if the study of classification for diagnosis and classification of pneumonia using deep learning continues, the contents of this thesis research can be used as basic data, and furthermore, it is expected that it will be helpful in selecting an efficient learning rate in classifying medical images using artificial intelligence.