• Title/Summary/Keyword: Methyltransferase

Search Result 301, Processing Time 0.026 seconds

Protein Methylase II from Chicken Pancreas: Purification and Properties (닭 췌장 Protein Methylase II의 분리정제 및 성질)

  • Yoo, Tae-Moo;Namkoong, Suck-Min;Hong, Sung-Youl;Lee, Hyang-Woo
    • YAKHAK HOEJI
    • /
    • v.35 no.6
    • /
    • pp.473-482
    • /
    • 1991
  • Protein methylase II (S-adenosyl-L-methionine:protein carboxyl-O-methyltransferase; EC 2.1.1.24., PM II) was purified from chicken pancreas by subcellular fractionation, DEAE-cellulose chromatography, QAE-Sephadex A-50 chromatography, Sephadex G-75 chromatography, and Sephadex G-75 rechromatography. The purified PM II gave a single band upon polyarcrylamide gel electrophoresis both in the presence of SDS and in Tris glycine buffer without SDS. The pI value of purified PM II was identified as 5.7 on isoelectric focusing gel. Properties and activities of PM II were studied and the following results were obtained. 1) PM II from chicken pancreas was purified approximately 221-fold with a yield of 1.3%. 2) The purified PM II appear constituted of a single polypeptide chain of a molecular weight 46,800 daltons. 3) Hemoglobin exhibited the highest of methyl-accepting activity among the substrates tested. 4) The purified PM II has a $K_m$ of $4.67{\times}10^{-6}M$ and a $V_{max}$ of 37.5 pmoles of $methyl-^{14}C/min./mg$ enzyme for $SAM^{-14}CH_3$ as methyl donor in the presence of histone type II-As. 5) It is found that S-adenosyl-L-homocysteine is a competitive inhibitor for PM II with $K_i$ value of $3.23{\times}10^{-5}M$.

  • PDF

Combinatorial Effect of 5-FU and Epigenetic Silencing Repressors in Human Colorectal Cancer Cells (인체대장암 세포에서 후성적 유전자 불활성화 저해제와 5-Fluorouracil의 병용효과분석)

  • Kim Mi-Young;Son Jung-Kyu;Lee Suk-Kyeong;Ku Hyo-Jeong
    • YAKHAK HOEJI
    • /
    • v.49 no.6
    • /
    • pp.511-517
    • /
    • 2005
  • Low sensitivity to anticancer drugs such as 5-fluorouracil (5-FU) has been associated with decreased expression of genes involved in cell proliferation, apoptosis and metastasis. Recently, it has been shown that the expression levels of some of these genes are reduced by transcription inhibition due to epigenetic silencing on CpG islands. Therefore, epigenetic therapy has been proposed, where epigenetic silencing is repressed with DNA methyltransferase (DNMT) inhibitors and histone deacetylase (HDAC) inhibitors alone or in combination with other chemotherapeutic agents. The aim of our study was to evaluate the combination effect of 5-FU and its association with the status of epigenetic silencing using methylation-specific PCR of $p14^{ARF}$ when given with S-aza-2'-deoxycytidine (5-aza-dC), a DNMT inhibitor and depsipeptide, an HDAC inhibitor in DLD-1 human colorectal cancer cells. The combination of 5-aza-dC with depsipeptide showed a synergism and induced unmethylation of $p14^{ARF}$. However, triplet combination of 5-aza-dc/depsipeptide and 5-FU resulted in antagonistic effects and abrogated unmethylation of $p14^{ARF}$. These results suggest that unfavorable interaction of 5-aza-dC/depsipeptide with 5-FU in DLD-1 cells may be related with the failure in repression of epigenetic silencing, which warrants further investigation.

THe Effect of Chronic Ehronic Treatment and Cold stress on Catecholaminergic Enzyme activity and mRNA in Rat Brain and Adrenals

  • Lee, Yong-Kyu;Park, Dong-H
    • Archives of Pharmacal Research
    • /
    • v.19 no.5
    • /
    • pp.374-380
    • /
    • 1996
  • Sprague-Dawley male rats (150 g) were chronically treated with 5 v/v % ethanol admixed with nutritionally complete liquid diet and fed ad libitum for 3 weeks. One half of each group was exposed to cold stress at 4 ^{\circ}C either for 24 h (for determination of mRNA by in situ hybridization) or for 48 h (for determination of enzyme activity). Chronic ethanol treatment (ethanol) did not affect tyrosine hydroxylase(TH) mRNA level in locus coeruleus(LC) of brain and adrenal medulla(AM) compared to controls. Cold stress showed strong increase of TH mRNA level in LC and AM compared to controls. Pretreated ethanol reduced the increased TH mRNA level by cold stress in LC and AM. Ethanol did not affect TH activity in LC and adenal glands(adrenals). Cold stress increased TH activity in LC but not in adrenals. Pretreated ethanol did not reduce the increased TH activity by cold stress in LC but this result was not shown in adrenals. Phenylethanolamine-N-methyltransferase(PNMT) activity in $C_{1}$$C_{2}$ and adrenals increased only in ethanol treated group. THese results suggest that ethanol does not affect TH mRNA level and activity in LC and adrenals, but increases PNMT activity in $C_{1}$$C_{2}$ and adrenals in normal rat. It is also suggested that pretreated ethanol reduces the magnitude of cold stress response, that is induction of TH mRNA in LC and AM, and does not reduce the protein activation of TH that is also cold stress response in LC.

  • PDF

Effects of Promoter Methylation on the Expression Levels of Plakoglobin Gene in Both the ARO Thyroid Cancer Cell Line and Cancer Tissues

  • Han, Kyung-Hee;Kim, Tai-Jeon
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.41 no.4
    • /
    • pp.180-188
    • /
    • 2009
  • Plakoglobin (PKG) is a protein linking cadherin adhesion receptors to the actin cytoskeleton and its overexpression has been known to suppress cell proliferation and tumorigenesis in thyroid cancer. We investigated the effect of 5-aza-2'-deoxycytidine (5-Aza-CdR), a DNA methyltransferase inhibitor, on the methylation status of the promoter and the expression of the plakoglobin gene in a thyroid carcinoma cell line (ARO) and papillary thyroid carceinoma. In cultures of ARO cell line incubated without 5-Aza-2'-deoxycytidine (5-Aza-CdR), five of the fifteen CpG sites in the promoter spanning -225 and -54 were methylated at 4.2 - 12.5%. When the cells were treated with 5-Aza-CdR, all the methylated CpG sites were induced to be demethylated except one. In addition, a new methylation at one CpG site, CpG4, was identified at level of 12.0%. The expression level of PKG decreased approximately 10-fold in the 5-Aza-CdR treated cells compared to untreated cells. Different pattern of promoter methylation and expression of PKG was also observed in the tissue samples. CpG10 and CpG12 sites were methylated at 9.0-27.0% in normal tissues. However, in cancer tissues, CpG5 and CpG10 sites were methylated at 10.0-22.0%. Three of ten normal thyroid tissue samples and one of thirteen papillary carcinoma tumor samples showed increased PKG mRNA expression level. PKG protein expression analyzed by the immunohistochemical staining showed higher expression in the tumor compared with normal.

  • PDF

Cloning and Expression of the Bdi Methylase Gene in E. coli (대장균 내에서의 Bdi I Methylase 유전자의 클로닝과 발현)

  • 전희숙;김용석;최경래;노현모
    • Korean Journal of Microbiology
    • /
    • v.25 no.1
    • /
    • pp.40-45
    • /
    • 1987
  • The gene for the Bdi I modification enzyme, which is one of Bdi I restriction-modification system, fromBrevibacterium divaricatum FERM 5948 was cloned and expressed in E. coli. For cloning of the Bdi I methylase gene, we have initially used three cloning site(EcoRI, BamHI and Sal I) of plasmid vector pBR 322 and adopted the retransformation method after Bdi I restriction endonuclease cleavage. Selection of transformants carrying the gene was based on the resistance of the modified plasmid encoding the enzyme to cleavage by Bdi I restriction enzyme, and the recombinant plasmid pBDIM 116 containing 5.6kb EcoRI insery was proved to carry the gene. Crude cell extracts prepared from strains carrying the plasmid pBDIM 116 contained an S-adenosylmethionine-dependent methyltransferase activity specific for the Bdi I recognition site, ATCGAT. The restriction map was constructed with 11 restriction enzyme, and the Bdi I restriction-modification system was also discussed.

  • PDF

The effect on gene expression profile of rat hippocampus caused by administration of memory enhancing herbal extract (육미지황탕가미방(六味地黃湯加味方)이 흰쥐의 기억능력과 중추신경계 유전자 발현에 미치는 영향)

  • Choi, Bo-Eop
    • Korean Journal of Oriental Medicine
    • /
    • v.8 no.1
    • /
    • pp.109-126
    • /
    • 2002
  • The herbal extract (YMT_02) is a modified herbal extracts from Yukmijihwangtang (YMJ) to promote memory-enhancing. The YMJ extracts has been widely used as an anti-aging herbal medicine for hundred years in Asian countries. The purpose of this study is to; 1) quantitatively evaluate the memory-enhancing effect of YMT_02 by hehavior task, 2) identify candidate genes responsible for enhancing memory by cDNA microarray and 3) assess the anti-oxidant effect of YMT_02 on PC12 cell. Memory retention abilities are addressed by passive avoidance task with Sprague-Dawley (SD) male rat. Before the training session, the rats are subdivided into four groups and administrated with YMT_02, Ginkgo biloba, Soya lecithin and normal saline for 10 days. The retention test was performed. 24 hours after the training session. The retention time of the YMT_02 group was significantly (p<0.05) delayed $({\sim}100%)$, whereas Ginkgo biloba and Soya lecithin treatment delayed 20% and 10% respectively. The hippocampi of YMT_02 and control group were dissected and mRNA was further purified. After synthesizing cDNA using oligo-dT primer, the cDNA were applied and mRNA was further purified. After synthesizing cDNA using oligo-dT primer, the cDNA were applied to Incyte rat GEMTM 2 cDNA microarray. The microarray results show that prealbumin(transthyretin), phosphotidy lethanolamine N-methyltransferase, and PEP-19 are expressed abundantly in the YMT_02 treated group. Especially, PEP-19 is a neuron-specific protein, which inhibits apoptotic processes in neuronal cell. On the other hand, transcripts of RAB15, glutamate receptor subunit 2 and CDK 108 are abundant in control group. Besides, neuronal genes involved in neuronal death or neurodegeneration such as neuronal-pentraxin and spectrin are abundantly expressed in control group. Additionally, the YMT_02 shows an anti oxidative effect in the PC12 cell. The list of differentially expressed genes may implicate further insight on the action and mechanism behind the memory-enhancing effect of herbal extracts YMT_02, for example, anti-apoptotic, anti-oxidative, and neuroprotective effects.

  • PDF

Histone Lysine Methylation (히스톤 라이신 메틸화)

  • Kwak, Sahng-June
    • Journal of Life Science
    • /
    • v.17 no.3 s.83
    • /
    • pp.444-453
    • /
    • 2007
  • Our genome exists in the form of chromatin, and its structural organization should be precisely regulated with an appropriate dynamic nature for life. The basic unit of chromatin is a nucleosome, which consists of a histone octamer. These nucleosomal histones are subject to various covalent modifications, one of which is methylation on certain lysine residues. Recent studies in histone biology identified many histone Iysine methyltransferases (HKMTs) responsible for respective lysine residues and uncovered various kinds of involved chromatin associating proteins and many related epigenetic phenotypes. With the aid of highly precise experimental tools, multi-disciplinary approaches have widened our understanding of how lysine methylation functions in diverse epigenetic processes though detailed mechanisms remain elusive. Still being considered as a relatively more stable mark than other modifications, the recent discovery of lysine demethylases will confer more flexibility on epigenetic memory transmitted through histone lysine methylation. In this review, advances that have been recently observed in epigenetic phenotypes related with histone lysine methylation and the enzymes for depositing and removing the methyl mark are provided.

Protein Arginine Methyltransferase 1 Methylates Smurf2

  • Cha, Boksik;Park, Yaerin;Hwang, Byul Nim;Kim, So-young;Jho, Eek-hoon
    • Molecules and Cells
    • /
    • v.38 no.8
    • /
    • pp.723-728
    • /
    • 2015
  • Smurf2, a member of the HECT domain E3 ligase family, is well known for its role as a negative regulator of TGF-${\beta}$ signaling by targeting Smads and TGF-${\beta}$ receptor. However, the regulatory mechanism of Smurf2 has not been elucidated. Arginine methylation is a type of post-translational modification that produces monomethylated or dimethylated arginine residues. In this report, we demonstrated methylation of Smurf2 by PRMT1. In vitro methylation assay showed that Smurf2, not Smurf1, was methylated by PRMT1. Among the type I PRMT family, only PRMT1 showed activity for Smurf2. Transiently expressed Smurf2 was methylated by PRMT1, indicating Smurf2 is a novel substrate of PRMT1. Using deletion constructs, methylation sites were shown to be located within amino acid region 224-298 of Smurf2. In vitro methylation assay following point mutation of putative methylation sites confirmed the presence of Arg232, Arg234, Arg237, and Arg239. Knockdown of PRMT1 resulted in increased Smurf2 expression as well as inhibition of TGF-${\beta}$-mediated reporter activity. Although it is unclear whether or not increased Smurf2 expression can be directly attributed to lack of methylation of arginine residues, our results suggest that methylation by PRMT1 may regulate Smurf2 stability and control TGF-${\beta}$ signaling.

Recombinant Protein Expression and Purification of the Human HMTase MMSET/NSD2

  • Morishita, Masayo;Mevius, Damiaan;Shen, Yunpeng;Di Luccio, Eric
    • Current Research on Agriculture and Life Sciences
    • /
    • v.31 no.3
    • /
    • pp.157-164
    • /
    • 2013
  • Chromatin remodelers that include histone methyl transferases (HMTases) are becoming a focal point in cancer drug development. The NSD family of three HMTases, NSD1, NSD2/MMSET/WHSC1, and NSD3/WHSC1L are bona fide oncogenes found aberrantly expressed in several cancers, suggesting their potential role for novel therapeutic strategies. Several histone modifiers including HMTase have clear roles in human carcinogenesis but the extent of their functions and regulations are not well understood, especially in pathological conditions. The extents of the NSDs biological roles in normal and pathological conditions remain unclear. In particular, the substrate specificity of the NSDs remains unsettled and discrepant data has been reported. NSD2/MMSET is a focal point for therapeutic interventions against multiple myeloma and especially for t(4;14) myeloma, which is associated with a significantly worse prognosis than other biological subgroups. Multiple myeloma is the second most common hematological malignancy in the United States, after non-Hodgkin lymphoma. Herein, as a first step before entering a pipeline for protein x-ray crystallography, we cloned, recombinantly expressed and purified the catalytic SET domain of NSD2. Next, we demonstrated the catalytic activities, in vitro, of the recombinantly expressed NSD2-SET on H3K36 and H4K20, its biological targets at the chromatin.

  • PDF

Novel Genetic Associations Between Lung Cancer and Indoor Radon Exposure

  • Choi, Jung Ran;Koh, Sang-Baek;Park, Seong Yong;Kim, Hye Run;Lee, Hyojin;Kang, Dae Ryong
    • Journal of Cancer Prevention
    • /
    • v.22 no.4
    • /
    • pp.234-240
    • /
    • 2017
  • Background: Lung cancer is the leading cause of cancer-related death worldwide, for which smoking is considered as the primary risk factor. The present study was conducted to determine whether genetic alterations induced by radon exposure are associated with the susceptible risk of lung cancer in never smokers. Methods: To accurately identify mutations within individual tumors, next generation sequencing was conduct for 19 pairs of lung cancer tissue. The associations of germline and somatic variations with radon exposure were visualized using OncoPrint and heatmap graphs. Bioinformatic analysis was performed using various tools. Results: Alterations in several genes were implicated in lung cancer resulting from exposure to radon indoors, namely those in epidermal growth factor receptor (EGFR), tumor protein p53 (TP53), NK2 homeobox 1 (NKX2.1), phosphatase and tensin homolog (PTEN), chromodomain helicase DNA binding protein 7 (CHD7), discoidin domain receptor tyrosine kinase 2 (DDR2), lysine methyltransferase 2C (MLL3), chromodomain helicase DNA binding protein 5 (CHD5), FAT atypical cadherin 1 (FAT1), and dual specificity phosphatase 27 (putative) (DUSP27). Conclusions: While these genes might regulate the carcinogenic pathways of radioactivity, further analysis is needed to determine whether the genes are indeed completely responsible for causing lung cancer in never smokers exposed to residential radon.