• Title/Summary/Keyword: Methylparaben

Search Result 22, Processing Time 0.031 seconds

The effect of nonionic surfactants on the antimicrobial activity of preservatives in cosmetic products (비이온 계면 활성제가 화장품의 방부력에 미치는 영향)

  • 최종완
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.18 no.1
    • /
    • pp.42-63
    • /
    • 1992
  • In order to investigate the effect of nonionic surfactants on the antimicrobial activity of preservatives in the presence and absence of p.0.E(20) Sorbitan fatty acid ester commonly used in cosmetics and pharmaceutical systems, these experiments were carried out by determining Minimum Inhibitory Concentration(MIC) values and MIC values of adaptation against test organisms. And also the inactivation of the preservative against each microorganism in formula added with various concentrations of P.0.E(20) Sorbitan monostearate were measured by use of a preservative death time curve The results obtained were as fort low : 1) Nonionic surfactant inactivated Methylparaben to varying extents, but not Imidazolidinyl urea. 2) A combined preservative system was inactivated to a little extent (range of 0.16-0.20% Conc.), no adaptation was observed for the 5. aureus ATCC 6538. Imidazolidinyl urea complex combined with Methylparaben had a broad antibacterial spectrum against the Gram(.) and the Gram(-) bacteria It was found that preservatives had a synergistic effect by use of mixed form of preservatives, 3) In formula preserved with 0.2% Methylparaben containing 0.5, 1.0 and 2.0% P.0.E(20) Sorbitan monostearate, E. coli ATCC 10s36 and P. aeruginosa NCTC 10490 died quickly within in 2hr 4) However, from Fig.5, S. aereus ATCC 6538 died more slowly within increasing surfactant concentration and the D-values(Decimal reduction time) were 5.2, 8 and 14 hr. for samples containing 0.5, 1 0 and 2.0% P 0. E(20) Sorbitan monostearate, respectively. 5) In the case of Methylparaben, no adaptation for the E. coli ATCC 10536 6) All of the nonionic surfactant, p.0. E(20) Sorbitan fatty acid ester used in the experiments decreased the effectiveness of Methylparaben, but not of Imidazolidinyl urea.

  • PDF

Determination of p-Anisic Acid and Methylparaben by Using High Performance Liquid Chromatography (HPLC를 이용한 p-아니식애씨드와 메칠파라벤의 분리 분석법 개발)

  • Kim, Il Hyun;Ryu, De Hun;Kim, Young Soo;Jung, Eun Sun;Park, Deok Hoon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.4
    • /
    • pp.359-364
    • /
    • 2014
  • In this study, we developed a HPLC method for the separation and analysis of methylparaben and p-anisic acid, which are commonly used as a synthetic preservative and natural preservative, respectively. Methylparaben and p-anisic acid have same molecular weight (152.15 g/mol), similar structure and same maximum absorption wavelength (250 nm), thus they showed same retention time (RT) value (13.3 min) in HPLC experiment. We observed that two substances are separated on C18 column after methylparaben was derivatized selectively through the acetylation reaction. Instead, RT of the acetylated methylparaben was moved to 23.9 min from 13.3 min. The average retention time was $23.9{\pm}0.1min$ and peak area values was $5042882{\pm}4778$. In addition it showed a high linearity in the calibration curve with a correlation coefficient (R2) of 0.9999658. Detection and quantitation limits were $1.47{\mu}g/mL$ and $4.44{\mu}g/mL$, respectively. In conclusion, the developed method can be useful for separation and analysis of preservatives with similar structure in cosmetic fields.

Suppressive effect of electrolyzed reduced water on the paraben-induced DNA damage in human dermal fibroblast cells (파라벤에 의한 피부섬유아세포의 DNA 손상과 환원전리수의 억제 효과)

  • Yu, A-Reum;Ryoo, Kun-Kul;Lee, Mi-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4427-4432
    • /
    • 2010
  • Parabens have been widely used as preservatives in cosmetics due to the presumed low toxicity and long history of safe use. However, recent studies have shown the potent toxicity of parabens. In order to know if electrolyzed reduced water could suppress the oxidative DNA damage of HDF cell by methylparaben, one of the frequently used parabens, we performed comet assay in this study. As a result, interestingly, electrolyzed reduced water could suppress methylparaben-induced oxidative DNA damage in HDF cells.

Comparision of Anti-microbial Oils as Natural Preservatives (천연방부제로서 항균오일의 항균력 비교)

  • Kim, Mi-Jin;Jung, Taek-Kyu;Hong, In-Gi;Yoon, Kyung-Sup
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.32 no.2 s.57
    • /
    • pp.99-103
    • /
    • 2006
  • Natural essential oils showed anti-microbial activity on relatively broad spectrum of bacterial and fungal species. These materials had much more intensive anti-microbial activities than synthetic preservatives on C. albicans, A niger, and P. acnes, especially. In the experimental group, anti-microbial activity was order of tea tree oil (from Melaleuca alternifolia) > methylparaben > phytoncide (from Chamaecyparis obtusa). Also, natural essential oils had anti-oxidative and anti-inflammatory effects. These results suggest that natural essential oils can be useful as good cosmetic ingredients such as natural preservatives and anti-oxidants.

The Antimicrobial Effects of Natural Aromas for Substitution of Parabens (합성 항균제를 대체하기 위한 천연물질의 항균 효과)

  • 조춘구;김봉남;홍세흠;한창규
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.28 no.1
    • /
    • pp.166-185
    • /
    • 2002
  • Aroma oils extracted from the natural material have antibacterial, antivirus, antiinflammatory, and preservative effect. The preserve efficacy testing between aroma oils and parabens as an artificial preservative had been performed and then it had been suggested that aroma oil was possibile to apply to the cosmetics. Aroma oils were pine, rosemary, lemon and eucalyptus, and parabens were methylparaben, blitylparaben. Antiseptic concentrations of aroma oils and parabens having 0.0, 0.1, 0.2, 0.4, 0.8, 1.0wt% were tested respectively. Escherichia coil(ATCC No.8739), Pseudomonas aeruginosa(ATCC No. 9027) which are gram-negative and Staphylococcus aureus (ATCC No. 6538), Bacillus subtilis(ATCC No. 6633) which are gram-positive were used as the test organisms. Disk paper and broth dilution methods were used as the methods of preservative efficacy testing. The antibacterial activity of aroma oils and parabens for gram-positive were better than that for gram-negative. For the antibacterial activity aroma oils were better than parabens. Among the aroma oils, rosemary and pine having superior antibacterial activity were selected and blended to illuminate if there is any synergy, There was synergical effect and optimum ratio of aroma blend is 3 : 1(rosemary pine) in this study.

The Studies on the Development of Low Irritable Preservative System with Phenoxyethanol in Cosmetics (Phenoxyethanol을 이용한 저자극 방부시스템 개발에 관한 연구)

  • Ahn, Gi-Woong;Lee, Chn-Mong;Kim, Hyeong-Bae;Jeong, Ji-Hen;Jo, Byoung-Kee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.1 s.49
    • /
    • pp.43-49
    • /
    • 2005
  • Recently, according as people who have sensitive skin increase, we've been giving more importance to the safety of cosmetics. Especially, preservative is known to be one of the main stimuli which cause side-effects of cosmetics. However, there have been few reports describing cell cytotoxicity, skin penetration, oil-aqueous phase partition, anti-microbial activity of preservatives and their correlation with skin irritation. The study is aimed to develop low irritable preservative system with phenoxyethanol, one of the most commonly used preservatives in cosmetics, considering various factors mentioned above. According to our results of cell cytotoxicity against human normal fibroblasts by means of MTT assay, phenoxyethanol showed the lowest cytotoxicity when compared to other preservatives tested (cytotoxicity: pro-pylparaben > butylparaben > ethylparaben > methylparaben > triclosan > phenoxyethanol), but human patch test for assessing shin primary irritation revealed that phenoxyethanol has higher skin irritation than methylparaben and triclosan. We performed in vitro skin penetration test using horizontal Franz diffusion cells with skin membrane prepared from hairless mouse (5 ${\~}$ 8 weeks, male) to evaluate the rate of skin penetration of preservatives. From the results, we found that the higher irritable property of phenoxyethanol in human skin correlates with its predominant permeability (skin penetration: phenoxyethanol > methylparaben > ethylparaben > propylparaben > butylfaraben > triclosan). Therefore, we made an effort to reduce skin permeability of phenoxyethanol and found that not only the rate of skin penetration of phenoxyethanol but also its skin irritation is dramatically reduced in formulas containing oils with low polarity. In the experiments to investigate the effect of oil polarity on the oil-aqueous phase partition of phenoxyethanol, more than $70\%$ of phenoxyethanol was partitioned in aqueous phase in formulas containing oils with low polarity, while about $70 {\~} 90\%$ of phenoxyethanol was partitioned in oil phase in formulas containing oils with high polarity. Also, in aqueous phase phenoxyethanol showed greater anti-microbial activity. Conclusively, it appears that we can develop less toxic preservative system with reduced use dosage of phenox-yethanol and its skin penetration by changing oil composition in formulas.

Anti-microbial Activities of Ten Lauraceae Species against Propionibacterium acnes (여드름 유발균 Propionibacterium acnes에 대한 녹나무과 10종의 항균활성)

  • Cho, Ju Sung;Chi, Lai Won;Jang, Bo Kook;Jeong, Heon Sang;Lee, Cheol Hee
    • Korean Journal of Plant Resources
    • /
    • v.31 no.5
    • /
    • pp.423-432
    • /
    • 2018
  • This study was performed to develop a new natural antimicrobial materials by analyzing the effect of extracts obtained from Ten Lauraceae Species on the inhibitory activity against Propionibacterium acnes. The plant materials were collected from Wando and Jeju islands, and the antimicrobial activity of the crude extracts was examined by the agar diffusion method with different part (i.e., leaf and branch), solvents (i.e., distilled water, 80% ethanol, and 100% methanol) and at different ultrasonic extracting times (i.e., 15, 30, and 45 minutes). The control agents used were synthetic antimicrobials, methylparaben and phenoxyethanol, at concentrations of 0.4, 1, 2, and 4 mg/disc. Altogether, extracts of 10 species used in the study showed inhibitory activity, which confirmed their antimicrobial action against acnes. Among these, leaves of Laurus nobilis L. which was extracted in 80% ethanol for 45 min showed the largest clear zone (19.8 mm). Leaves of L. nobilis L., showing highest antimicrobial activities among 10 species, were successively reextracted with n-hexane, chloroform, ethylacetate and n-butanol. As a results, in all fractions except butanol, clear zone above 10 mm were formed. The ethyl acetate fraction showed the highest inhibitory activity (13.3 mm) and the inhibitory activity was significantly higher than that of crude extract (10.2 mm) and phenoxyethanol as a control (12.5 mm).

Antimicrobial Activity Screening of Sixty-four Evergreen Woody Species According to Extraction Conditions against Trichophyton mentagrophytes (상록성 목본 64종의 추출조건에 따른 무좀원인균의 항균활성 스크리닝)

  • Jang, Bo Kook;Chi, Lai Won;Cho, Ju Sung;Lee, Cheol Hee
    • Korean Journal of Plant Resources
    • /
    • v.31 no.4
    • /
    • pp.330-341
    • /
    • 2018
  • This study was performed to investigate and measure the antimicrobial activity of evergreen woody species extracts on Trichophyton mentagrophytes. To do this, leaves and stems were collected from Wando and Jeju islands, and were used for the extraction with different solvents (i.e., distilled water, 80% ethanol, and 100% methanol), and at different ultrasonic extracting times (i.e., 15, 30, and 45 minutes). The experiment was conducted by using the agar diffusion method. The clear zone was measured after incubating the paper disc containing the plant extract in a bacterial culture medium. The controls were synthetic antimicrobials, methylparaben and phenoxyethanol, at concentrations of 0.4, 1, 2, and 4 mg/disc. Altogether, extracts of 56 out of 64 species used in this study had inhibitory activity, which confirmed their antimicrobial activity against Athlete's foot. Among them, the crude ethanolic extract of Elaeocarpus sylvestris in 45 min showed a zone of inhibition < 20.2 mm, while the clear zone of Actinodaphne lancifolia ethanolic extraction for 30 min was 23.5 mm. Also, Quercus acuta, Dendropanax morbiferus and Daphne odora showed clear zones of 28.0 mm (45 minutes ethanolic extraction), 20.5 mm (45 minutes crude methanolic extraction) and 19.7 mm (45 minutes methanolic extraction), respectively. Thus, these results confirm that the extracts of evergreen woody species have therapeutic potential against Athlete's foot, and suggest that in order to extract adequate amounts of antimicrobial substance from the plant sources, ideal extraction condition has to be considered.

Preliminary screening to assess the antimicrobial activities of extracts of evergreen woody species from South Korea against Staphylococcus aureus

  • Jang, Bo Kook;Chi, Lai Won;Cho, Ju Sung;Lee, Cheol Hee
    • Journal of Plant Biotechnology
    • /
    • v.47 no.1
    • /
    • pp.90-99
    • /
    • 2020
  • This study aimed to screen for plants with antimicrobial potential among the evergreen woody species of South Korea that are used for horticulture and landscaping and to provide basic information about plants with proven antimicrobial activity to underpin future research. The plant materials were extracted under various conditions, and the antimicrobial activities of the extracts were evaluated by agar diffusion assay. The screening tests demonstrated that the crude extracts of 43 species had inhibitory effects against S. aureus. The inhibitory activities of four species (Elaeocarpus sylvestris, Camellia japonica, Cleyera japonica, and Quercus salicina) were relatively higher than that of the synthetic antimicrobial agents methylparaben and phenoxyethanol. The highest inhibitory activity was observed with the leaf extracts (extracted with methanol for 30 minutes) of E. sylvestris, based on induction of the largest inhibition zone of 23.3 mm in size. In addition, solvent fractions of E. sylvestris were evaluated. The largest inhibitory zone of 23.1 mm was observed for the n-butanol fraction, which is likely to contain effective compounds that exhibit inhibitory activity against S. aureus. In contrast, n-hexane and residual aqueous fractions showed no antimicrobial activity. Overall, our findings confirm that evergreen woody plants native to South Korea have potential antimicrobial activity.

Study of Retention in Micellar Liquid Chromatography on a C18 Column on the Basis of Linear Solvation Energy Relationships

  • Tian, Minglei;Row, Kyung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.5
    • /
    • pp.979-984
    • /
    • 2008
  • In this study, 8 solutes (aniline, caffeine, p-cresol, ethyl benzene, methylparaben, phenol, pyridine, and toluene) have been tested in terms of linear solvation energy relationships (LSER). Several micellar liquid chromatography (MLC) systems using cationic surfactant cetyltrimethylammonium bromide (CTAB) and a mixture of water with (methanol, n-propanol, and n-butanol) modifiers were characterized using the LSER solvation parameter model. The effects of the surfactant and modifier concentration on the retention in MLC were discussed. LSER model had demonstrated high potential to predict retention factors with high squared correlation coefficients ($r^2$ > 0.99). A comparison of predicted and experimental retention factors suggests that LSER formalism is able to reproduce adequately the experimental retention factors of the solutes studied in the different experimental conditions investigated. This model is a helpful tool to understand the solute-surfactant interactions and evaluate the retention characteristic of micellar liquid chromatography.