• Title/Summary/Keyword: Methylation

Search Result 792, Processing Time 0.028 seconds

Methylation Status and Expression of E-cadherin in Oral Squamous Cell Carcinomas Compared t6 Benign Oral Epithelial Lesions

  • Son, Hyun-Jin;Chu, Jung-Youb;Cho, Eui-Sic;Lee, Dong-Geun;Min, Myung-Gee;Lee, Suk-Keun;Cho, Nam-Pyo
    • International Journal of Oral Biology
    • /
    • v.31 no.2
    • /
    • pp.27-32
    • /
    • 2006
  • Expression of invasion/metastasis suppressor, E-cadherin, is reduced in many types of human carcinomas. Although somatic and germline mutations in the CDH1, which encodes the human E-cadherin, have frequently been reported in cases with diffuse gastric and lobular breast cancers, irreversible genetic inactivations are rare in other human carcinomas. Recently, it has been well documented that some genes in human cancers may be inactivated by altered CpG methylation. Herein, we determined the expression and methylation status of E-cadherin in oral squamous cell carcinoma(SCC) by immunohistochemistry and methylation-specific PCR. The expression of E-cadherin was significantly higher in the well-differentiated oral SCCs than the moderately or poorly differentiated ones. None of eight tested benign epithelial hyperplasias showed aberrant methylation, whereas five of 12 oral squamous cell carcinomas showed aberrant methylation. When we compared E-cadherin expression with methylation status, oral SCCs with normal methylation showed a higher expression of E-cadherin than those with methylation. These findings suggest that aberrant CpG methylation of CDH1 promoter region is closely associated with transcriptional inactivation and might be involved in tumor progression of the oral mucosa.

DNA methylation-based age prediction from various tissues and body fluids

  • Jung, Sang-Eun;Shin, Kyoung-Jin;Lee, Hwan Young
    • BMB Reports
    • /
    • v.50 no.11
    • /
    • pp.546-553
    • /
    • 2017
  • Aging is a natural and gradual process in human life. It is influenced by heredity, environment, lifestyle, and disease. DNA methylation varies with age, and the ability to predict the age of donor using DNA from evidence materials at a crime scene is of considerable value in forensic investigations. Recently, many studies have reported age prediction models based on DNA methylation from various tissues and body fluids. Those models seem to be very promising because of their high prediction accuracies. In this review, the changes of age-associated DNA methylation and the age prediction models for various tissues and body fluids were examined, and then the applicability of the DNA methylation-based age prediction method to the forensic investigations was discussed. This will improve the understandings about DNA methylation markers and their potential to be used as biomarkers in the forensic field, as well as the clinical field.

Forensic DNA methylation profiling from evidence material for investigative leads

  • Lee, Hwan Young;Lee, Soong Deok;Shin, Kyoung-Jin
    • BMB Reports
    • /
    • v.49 no.7
    • /
    • pp.359-369
    • /
    • 2016
  • DNA methylation is emerging as an attractive marker providing investigative leads to solve crimes in forensic genetics. The identification of body fluids that utilizes tissue-specific DNA methylation can contribute to solving crimes by predicting activity related to the evidence material. The age estimation based on DNA methylation is expected to reduce the number of potential suspects, when the DNA profile from the evidence does not match with any known person, including those stored in the forensic database. Moreover, the variation in DNA implicates environmental exposure, such as cigarette smoking and alcohol consumption, thereby suggesting the possibility to be used as a marker for predicting the lifestyle of potential suspect. In this review, we describe recent advances in our understanding of DNA methylation variations and the utility of DNA methylation as a forensic marker for advanced investigative leads from evidence materials.

A Finite Mixture Model for Gene Expression and Methylation Pro les in a Bayesian Framewor

  • Jeong, Jae-Sik
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.4
    • /
    • pp.609-622
    • /
    • 2011
  • The pattern of methylation draws significant attention from cancer researchers because it is believed that DNA methylation and gene expression have a causal relationship. As the interest in the role of methylation patterns in cancer studies (especially drug resistant cancers) increases, many studies have been done investigating the association between gene expression and methylation. However, a model-based approach is still in urgent need. We developed a finite mixture model in the Bayesian framework to find a possible relationship between gene expression and methylation. For inference, we employ Expectation-Maximization(EM) algorithm to deal with latent (unobserved) variable, producing estimates of parameters in the model. Then we validated our model through simulation study and then applied the method to real data: wild type and hydroxytamoxifen(OHT) resistant MCF7 breast cancer cell lines.

Histone methylation and transcription (히스톤 메틸화와 유전자 전사)

  • Kim, Ae-Ri
    • Journal of Life Science
    • /
    • v.17 no.4 s.84
    • /
    • pp.593-598
    • /
    • 2007
  • Amino acids of histone tail are covalently modified in eukaryotic cells. Lysine residues in histone H3 and H4 are methylated at three levels; mono-, di- or trimethylation. Methylation in histones is related with transcription of the genes in distinct pattern depending on lysine residues and methylated levels. Relation between transcription and methylation has been relatively well understood at three lysines H3K4, H3K9 and H3K36. H3K4 is methylated in active or potentially active chromatin and its methylation associates with active transcription. H3K9 is generally methylated in heterochromatin or repressed gene, but trimethylation of this lysine occur in actively transcribed genes also. Methylation at H3K36 generally correlates with active chromatin/transcription, but the correlation of its dimethylation with transcription is controversial. All together methylation patterns of individual lysine residues in histone relate with activation or repression of transcription and may provide distinctive roles in transcriptional regulation of the eukaryotic genes.

Epigenetic Field for Cancerization

  • Ushijima, Toshikazu
    • BMB Reports
    • /
    • v.40 no.2
    • /
    • pp.142-150
    • /
    • 2007
  • Epigenetic alterations, represented by aberrant DNA methylation, are deeply involved in human cancers. In gastric cancers, tumor-suppressor genes are inactivated more frequently by promoter methylation than by mutations. We recently showed that H. pylori infection, a potent gastric carcinogenic factor, induces methylation of specific genes in the gastric mucosae. When the methylation levels were analyzed in the gastric mucosae of healthy volunteers, cases with a single gastric cancer, and cases with multiple gastric cancers, who have increasing levels of risks for gastric cancers, there was a significant increasing trend in the methylation levels among the individuals without current H. pylori infection. This finding unequivocally showed the presence of an epigenetic field for cancerization. The degree of the field defect was measured more conveniently using methylation levels of marker genes than using those of tumor-suppressor genes. The presence of an epigenetic field for cancerization has been indicated for liver, colon, Barrett's esophageal, lung, breast, and renal cancers. Since decreased transcription is involved in the specificity of methylated genes, it is likely that specific genes are methylated according to carcinogenic factors. These findings emphasize the usefulness of DNA methylation as a marker for past exposure to carcinogens and future risk of cancer development.

Heat Stress Causes Aberrant DNA Methylation of H19 and lgf-2r in Mouse Blastocysts

  • Zhu, Jia-Qiao;Liu, Jing-He;Liang, Xing-Wei;Xu, Bao-Zeng;Hou, Yi;Zhao, Xing-Xu;Sun, Qing-Yuan
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.211-215
    • /
    • 2008
  • To gain a better understanding of the methylation imprinting changes associated with heat stress in early development, we used bisulfite sequencing and bisulfite restriction analysis to examine the DNA methylation status of imprinted genes in early embryos (blastocysts). The paternal imprinted genes, H19 and Igf-2r, had lower methylation levels in heat-stressed embryos than in control embryos, whereas the maternal imprinted genes, Peg3 and Peg1, had similar methylation pattern in heat-stressed embryos and in control embryos. Our results indicate that heat stress may induce aberrant methylation imprinting, which results in developmental failure of mouse embryos, and that the effects of heat shock on methylation imprinting may be gene-specific.

Hypermethylation of Suppressor of Cytokine Signaling 1 in Hepatocellular Carcinoma Patients

  • Saelee, Pensri;Chuensumran, Ubol;Wongkham, Sopit;Chariyalertsak, Sunanta;Tiwawech, Danai;Petmitr, Songsak
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3489-3493
    • /
    • 2012
  • Hepatocellular carcinoma (HCC), the most common primary hepatic tumor, is highly prevalent in the Asia-Pacific region, including Thailand. Many genetic and epigenetic alterations in HCC have been elucidated. The aim of this study was to determine whether aberrant methylation of the suppressor of cytokine signaling 1 gene (SOCS1) occurs in HCCs. Methylation specific-PCR assays were performed to identify the methylation status of SOCS1 in 29 tumors and their corresponding normal liver tissues. An abnormal methylation status was detected in 17 (59%), with a higher prevalence of aberrant SOCS1 methylation significantly correlating with HCC treated without chemotherapy (OR=0.04, 95%CI=0.01-0.31; P=0.001). This study suggests that epigenetic aberrant SOCS1 methylation may be a predictive marker for HCC patients.

Changes in Polyamine Level and Chloroplast DNA Methylation in Chlamydomonas reinhardtii (Chlamydomonas의 Polyamine 함량변화와 엽록체 DNA Methylation)

  • 이순희
    • Journal of Plant Biology
    • /
    • v.37 no.1
    • /
    • pp.101-109
    • /
    • 1994
  • Relationship between polyamine level and DNA methylation in the absence or presence of MGBG(l mM), which is an enzyme-activated reversible inhibitor of SAMDC, has been investigated during gametogenesis of Chlamydomonas. In the absence of MGBG, polyamine levels decreased in Chlamydomonas 137C(+) and 137C(-) during gametogenesis. And polyamine level of 137C(+) was 2-5 times as much as that of 137C(-) and showed a significant decrease unlike that of 137C(-). In vitro, MGBG inhibited ctDNA methylation of 137C(+) by 20-30% but did not inhibited that of 137C(-). Also, MGBG inhibited DNA methylase by 60% in vitro. The results obtained in the present work suggest the possibility that the changes of polyamine level may be associated with ctDNA methylation during gametogenesis of Chlamydomonas.omonas.

  • PDF

The first review study on association of DNA methylation with gastric cancer in Iranian population

  • Shahbazi, Mahsa;Yari, Kheirollah;Rezania, Niloufar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.5
    • /
    • pp.2499-2506
    • /
    • 2016
  • Background: Gastric cancer (GC) is the second leading cause of cancer-related death worldwide. Several environmental, genetic and epigenetic factors have been suggested to have a role in GC development. Epigenetic mechanisms like histone changes and promoter hyper-methylation are now being increasingly studied. Associations between methylation of many gene promoters with the risk of gastric cancer have been investigated worldwide. Such aberrant methylation may result in silencing of specific genes related to cell cycling, cell adhesion, apoptosis and DNA repair. Thus this molecular mechanism might have a key role in proliferation and migration of cancerous cells. Materials and Methods: In this review article we included studies conducted on DNA methylation and gastric cancer in Iranian populations. Using Science direct, Pubmed/PMC, Springer, Wiley online library and SciELO databases, all published data until 31 January 2016 were gathered. We also searched Science direct data base for similar investigations around the world to make a comparison between Iran and other countries. Results: By searching these databases, we found that the association between methylation of seven gene promoters and gastric cancer had been studied in Iran until 31 January 2016. These genes were p16, hLMH1, E-cadherin, CTLA4, $THR{\beta}$, mir9 and APC. Searching in science direct database also showed that 92 articles had been published around the world till January 2016. Our investigation revealed that despite the importance of GC and its high prevalence in Iran, the methylation status of only a few gene promoters has been studied so far. More studies with higher sample numbers are needed to reveal the relation of methylation status of gene promoters to gastric cancer in Iran. Conclusions: Further studies will be helpful in identifying associations of DNA methylation in candidate genes with gastric cancer risk in Iranian populations.