• Title/Summary/Keyword: Methyl Tertiary Butyl Ether(MTBE)

Search Result 32, Processing Time 0.041 seconds

파쇄 폐타이어를 이용한 반응벽체에 관한 연구: 폐타이어 내의 MTBE(Methyl tertiary Butyl Ether) 흡착 중심

  • 박상현;이재영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.176-179
    • /
    • 2003
  • Fuel oxygenates, such as Methyl tertiary Butyl Ether (MTBE) is additive in gasoline used to reduce air pollution. Gasoline components and fuel additives can leak form underground storage tanks. MTBE is far more water soluble than gasoline hydrocarbons like BTEX then it travels at essentially the same velocity as groundwater. MTBE in drinking water causes taste and odor problems. Therefore, the purpose of the this study is to examine the ability of ground rubber to sorb MTBE form water. The study consisted of running both batch and column tests to determine the sorption capacity and the flow through utilization efficiency of ground rubber. The result of Column test indicate that ground tire rubber has on the 36% utilization rate. Finally, it is clear that ground rubber present an attractive and relatively inexpensive sorption medium for a MTBE. The Author thought that to determine the economic costs of ground rubber utilization, the cost to sorb a given mass of contaminant by ground rubber will have to be compared to currently accepted sorption media.

  • PDF

A Study on Transport Characteristics of MTBE(Methyl Tertiary Butyl Ether) in Soil (MTBE(Methyl Tertiary Butyl Ether)의 토양내 이동특성에 관한 연구)

  • Cho, Ki-Chul;Park, Chang-Woong;Choi, Won-Joon;Kang, Seung-Yub;Hwang, Jong-Hyun;Kim, Youn-Soo;Oh, Kwang-Joong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.2
    • /
    • pp.190-198
    • /
    • 2008
  • In this stduy, the column experiments were carried out assuming the soil was contaminated by leakage of gasoline containing MTBE from USTs and pipes around gas stations. Then, characteristics of MTBE transport in the soil were investigated using CXTFIT program. The column experiments with different soil properties, moisture content, organic matter content and flow rate were carried out. Some parameters(D, R, $\beta$, $\omega$) used in two-site non-equilibrium adsorption model were obtained from measuring the MTBE concentration in injection-liquid and in effluent and using CXTFIT program. In addition, The characteristics of MTBE transport in the soil was found using BTCs and obtained parameters. Consequently, the advection decreased as the increase of the content of fine particle and organic, while the MTBE transport by advection was enhanced as increasing flow rate and moisture content.

Characteristics of MTBE for unleaded gasoline (무연 가솔린의 옥탄가 향상제인 MTBE의 특성)

  • 정석진
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.24-27
    • /
    • 1989
  • MTBE(Methyl Tertiary Butyl Ether)는 PMMA(Poly Methyl Methacrylate)를 생산하기 위한 석유화학 중간원료로 사용되는 것이 일반적이나, 무연휘발유 사용의 세계적인 추세에 힘입어 (정유산업에 있어서 그 수요가 날로 증가하고 있으며) 정유산업의 옥탄가 문제를 해결해 주는 유효적절한 수단으로 보급이 확대되고 있는 실정이다. 여기에서는 MTBE의 전반적인 특성 및 사용에 따른 효과 및 장단점을 소개하고자 한다.

  • PDF

A Study of Ground Tire as a Sorption Media for the Passive Treatment Wall: Sorption of MTBE (Methyl tertiary Butyl Ether) (파쇄 폐타이어를 이용한 반응벽체에 관한 연구: 폐타이어 내의 MTBE(Methyl tertiary Butyl Ether)흡착 중심)

  • 박상현;이재영;최상일
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.3
    • /
    • pp.37-44
    • /
    • 2003
  • Fuel oxygenates, such as Methyl tertiary Butyl Ether (MTBE) is additive in gasoline used to reduce air pollution. Gasoline components and fuel additives can leak: form underground storage tanks. MTBE is far more water soluble than gasoline hydrocarbons like BTEX then it travels at essentially the same velocity as groundwater. MTBE in drinking water causes taste and odor problems. Therefore, the purpose of the this study is to examine the ability of ground tire to sorb MTBE in water. The study consisted of running both batch and column tests to determine the sorption capacity, the required sorption equilibration time, and the flow through utilization efficiency of ground tire. The batch test result indicated that ground tire can attain equilibrium sorption capacities about 0.5 mg of MTBE. The result of column test indicate that ground tire has on the 36% utilization rate. Finally, it is clear that ground tire represented an attractive and relatively inexpensive sorption medium for a MTBE. Authors thought that to determine the economic costs of ground tire utilization, the cost to sorb a given mass of contaminant by ground tire will have to be compared to currently accepted sorption media. The cost comparison will also have to include regeneration and disposal cost.

파쇄 폐타이어가 혼합된 생물학적 반응벽체에 관한 연구 : 폐타이어와 미생물의 MTBE (Methyl tertiary Butyl Ether) 흡착

  • 정수봉;이재영;최상일
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.23-26
    • /
    • 2004
  • Methyl Tertiary-Butyl Ether is one of several fuel oxygenates added to gasoline to improve fuel combustion and reduce tile resulting concentration of hydrocarbon. Thus, MTBE transfer readily to groundwater from gasoline leaking from Underground Storage Tank. Therefor, there are significant risks and costs associated with the water contamination. MTBE is far more water soluble than gasoline hydrocarbon. The purpose of the this study is to test the ability of ground tire with facultative bacteria. Bacillus brevis, to sorb MTBE. The process is consisted both batch and column experiment to determine the sorption capacity. And Biofilm is observed by SEM in the column. Finally, it is clear that ground tire represent an attractive and relatively inexpensive sorption medium for a MTBE. The authors can surmise that to determine the economic cost of ground tire utilization, tile cost to sorb a given mass of contaminant by ground tire will have to be compared to currently accepted sorption media. and Bacillus brevis strain was eliminated on MTBE, too. The biobarrier that ground tire with bacteria, has potential for use in the remediation of MTBE-contaminated environments.

  • PDF

An Experimental Study on Simultaneous Reduction of Smoke and NOx in a Agricultural Diesel Engine (농용 디젤기관에서 매연과 NOx의 동시저감에 관한 실험적 연구)

  • 최승훈;오영택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.85-91
    • /
    • 2003
  • In this study, the potential possibility of oxygenated fuel such as Methyl tertiary butyl ether (MTBE) was investigated for the sake of exhausted smoke reduction from diesel engine. MTBE has been used as a fuel additive blended into unleaded gasoline to improve octane number, but the study of application for diesel engine was incomplete. Because MTBE includes oxygen content approximately 18%, it is a kind of oxygenated fuel that the smoke emission of MTBE is reduced remarkably compared with commercial diesel fuel. But, the NOx emission of MTBE blended fuel is increased compared with commercial diesel fuel. And, it was tried to analyze not only total hydrocarbon but individual hydrocarbon components from $C_1$ to $C_6$ in exhaust gas using gas chromatography to seek the reason for remarkable reduction of smoke emission. Individual hydrocarbons($C_1$~$C_6$) as well as total hydrocarbon of oxygenated fuel are reduced remarkably compared with diesel fuel. And, the effects of exhaust gas recirculation(EGR) on the characteristics of NOx emission has been investigated, too. It was found that simultaneous reduction of smoke and NOx was achieved with oxygenated fuel and cooled EGR method.

A study on the characteristics of fuel performance according to the oxygenated additive type for gasoline fuel Part 1. Fuel properties and evaporative emission characteristics (휘발유 연료용 함산소 첨가제 종류에 따른 성능 특성 연구 Part 1. 연료물성 및 증발가스 배출 특성)

  • Lee, Min-Ho;Kim, Jong-Ryeol;Kim, Ki-Ho;Ha, Jong-Han
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.118-128
    • /
    • 2016
  • As the interest on the air-pollution is gradually rising up at home and abroad, automotive and fuel researchers have been working on the exhaust emission reduction from vehicles through a lot of approaches, which consist of new engine design, innovative after-treatment systems, using clean (eco-friendly alternative) fuels and fuel quality improvement. This research has brought forward two main issues : exhaust emission and PM (particulate matter) particle emissions of gasoline vehicle. Exhaust emission and PM particle of automotive had many problem that cause of ambient pollution, health effects. In addition, researcher studied the environment problems of the MTBE contained in the fuel as oxygenate additives. The researchers have many data about the health effects of ingestion of MTBE. However, the data support the conclusion that MTBE is a potential human carcinogen at high doses. Based on the oxygenated fuel additive types (MTBE, Bio-ETBE, Bio-ethanol, Bio-butanol), this paper discussed the influence of oxygen contents on gasoline fuel properties and evaporative emission characteristics. Also, this paper assessed the acceleration and power performance of gasoline vehicle for the fuel property.