## Simultaneous Determination of Benzene, Toluene, Ethyl Benzene, xylene (BTEX) and Methyl *Tertiary*-Butyl Ether (MTBE) in Soil by Headspace Gas Chromatography-Mass Spectrometry.

## Ho-Sang Shin<sup>1</sup>· Hye-Sil-Ahn<sup>2</sup> and Tae Seung Kim<sup>3</sup>

<sup>1</sup>Department of Environmental Education,

<sup>2</sup>Department of Environmental Science, Kongju National University, Kongju, Korea

<sup>3</sup>Soil & Groundwater Division, National Institute of Environmental Research(NIER), Environmental Research Complex, Kyungseo-Dong, Seo-Gu, Incheon, Korea

A headspace gas chromatography-mass spectrometric assay method was developed for the simultaneous determination of benzene, toluene, ethyl benzene, xylene(BTEX) and methyl tertiary-butyl ether(MTBE) in soil contaminated with gasoline. 2g of soil sample were placed in 10 mL vial filled with 5 mL of phosphoric acid solution (pH 2) saturated with NaCl, and the solution was spiked with fluorobenzene as an internal standard and sealed with cap. The vial was placed in a heating block for 50min at 80°C. The detection limits of the assay were 0.1 ng/g for MTBE, benzene, toluene and m-xylene, and, 0.2 ng/g for ethyl benzene, o,p-xylene. A regression line of peak area ratio for target compounds to internal standard on concentration using a least-squares fit demonstrated a linear relationship with correlation coefficient being greater than 0.995. The reproducibility of the assay was very good. For five independent determinations at 10ng/g, the relative standard deviations were less than 10%. The developed method may be valuable to be used to the national monitoring project of BTEX and MTBE in soil.

Table 1. GC-MS conditions for analysis of MTBE and BTEX

| Parameter                                                           | Condition                                                                                                                          |                          |                                           |    |  |  |  |  |
|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------|----|--|--|--|--|
| Column Carrier Oven Temp. Split Ratio Injector Temp. Transfer Temp. | HP-5MS(30m×0.2mmI.D.× 0.25 $\mu$ m F.T)<br>He at 0.9mL/min<br>35 °C (1 min) → 5 °C/min → 70 °C (3 min)<br>1:10<br>250 °C<br>280 °C |                          |                                           |    |  |  |  |  |
|                                                                     | Group                                                                                                                              | Start Time(min)          | Selected Ions, m                          | /z |  |  |  |  |
| Selected Ion<br>Group                                               | 1<br>2<br>3<br>4                                                                                                                   | 1.4<br>2.1<br>3.5<br>6.5 | 41, 57, 73<br>78, 96<br>91, 92<br>91, 106 |    |  |  |  |  |



Figure 1. Extraction yield according to several conservation solutions

Table 2. QA & QC results for the analysis of MTBE and BTEX in soil

| Compounds    | Linear regression    | Correlation | MDL    | Spiked      | average± SD          |  |
|--------------|----------------------|-------------|--------|-------------|----------------------|--|
| Compounds    | Linear regression    | coefficient | (ng/g) | Conc.(ng/g) | (RSD%)               |  |
| MTBE         | Y = 0.0129x + 0.0286 | 0.9954      | 0.1    | 10          | $9.1 \pm 1.3 (13.7)$ |  |
| Benzene      | Y = 0.0323x + 0.0367 | 0.9962      | 0.1    | 10          | $10.9 \pm 0.8 (7.3)$ |  |
| Toluene      | Y = 0.0512x + 0.1587 | 0.9958      | 0.1    | 10          | $8.6 \pm 0.7$ (8.6)  |  |
| Ethylbenzene | Y = 0.0552x + 0.082  | 0.9985      | 0.2    | 10          | $9.3 \pm 0.6$ (6.4)  |  |
| m,p-Xylene   | Y = 0.0800x + 0.1988 | 0.9963      | 0.1    | 10          | $7.3 \pm 0.7 (9.4)$  |  |
| o-Xylene     | Y = 0.0465x + 0.0533 | 0.9983      | 0.2    | 10          | $8.8 \pm 0.7$ (7.6)  |  |