• Title/Summary/Keyword: Methods: Numerical

Search Result 5,359, Processing Time 0.029 seconds

Combination of Element-Free Galerkin Method and Infinite Elements (무요소법과 무한요소의 결합에 관한 연구)

  • 이상호;김태연
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.76-83
    • /
    • 2001
  • In this study, a new method coupling of Element-Free Galerkin(EFG) method and Infinite Elements(IE) method is presented for extending application of the EFG method to engineering problems in unbounded domain. EFG method and IE method are briefly reviewed, and then the coupling procedure of the two methods is proposed. Numerical Algorithm by way of EFG-lE coupling technique is also developed. Numerical results illustrate the performance of the proposed technique. The accuracy of numerical solutions by the developed algorithm is guaranteed in comparing those of the other methods.

  • PDF

Influence of Submerged Breakwater in front of Rubble Mound Breakwater (경사식 방파제의 전면에 설치된 수중방파제의 영향에 관한 연구)

  • Min, Hyun-Seong;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.217-220
    • /
    • 2008
  • The reflection coefficients and the run-up heights affected by submerged structures are studied by using the numerical and the laboratory experimental methods. The three-point method is chosen to calculate the reflection coefficients in both the experimental and the numerical methods. The results of numerical simulations are shown a good agreement with laboratory measurements. The reflection coefficients increase and the run-up heights decrease when the rubble mound breakwater is defended by low-crested structures.

  • PDF

Research on Numerical Calculation of Normal Modes in Nonlinear Vibrating Systems (비선형 진동계 정규모드의 수치적 계산 연구)

  • Lee, Kyoung-Hyun;Han, Hyung-Suk;Park, Sungho;Jeon, Soohong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.7
    • /
    • pp.795-805
    • /
    • 2016
  • Nonlinear normal modes(NNMs) is a branch of periodic solution of nonlinear dynamic systems. Determination of stable periodic solution is very important in many engineering applications since the stable periodic solution can be an attractor of such nonlinear systems. Periodic solutions of nonlinear system are usually calculated by perturbation methods and numerical methods. In this study, numerical method is used in order to calculate the NNMs. Iteration of the solution is presented by multiple shooting method and continuation of solution is presented by pseudo-arclength continuation method. The stability of the NNMs is analyzed using Floquet multipliers, and bifurcation points are calculated using indirect method. Proposed analyses are applied to two nonlinear numerical models. In the first numerical model nonlinear spring-mass system is analyzed. In the second numerical model Jeffcott rotor system which has unstable equilibria is analyzed. Numerical simulation results show that the multiple shooting method can be applied to self excited system as well as the typical nonlinear system with stable equilibria.

A dissipative family of eigen-based integration methods for nonlinear dynamic analysis

  • Chang, Shuenn-Yih
    • Structural Engineering and Mechanics
    • /
    • v.75 no.5
    • /
    • pp.541-557
    • /
    • 2020
  • A novel family of controllable, dissipative structure-dependent integration methods is derived from an eigen-based theory, where the concept of the eigenmode can give a solid theoretical basis for the feasibility of this type of integration methods. In fact, the concepts of eigen-decomposition and modal superposition are involved in solving a multiple degree of freedom system. The total solution of a coupled equation of motion consists of each modal solution of the uncoupled equation of motion. Hence, an eigen-dependent integration method is proposed to solve each modal equation of motion and an approximate solution can be yielded via modal superposition with only the first few modes of interest for inertial problems. All the eigen-dependent integration methods combine to form a structure-dependent integration method. Some key assumptions and new techniques are combined to successfully develop this family of integration methods. In addition, this family of integration methods can be either explicitly or implicitly implemented. Except for stability property, both explicit and implicit implementations have almost the same numerical properties. An explicit implementation is more computationally efficient than for an implicit implementation since it can combine unconditional stability and explicit formulation simultaneously. As a result, an explicit implementation is preferred over an implicit implementation. This family of integration methods can have the same numerical properties as those of the WBZ-α method for linear elastic systems. Besides, its stability and accuracy performance for solving nonlinear systems is also almost the same as those of the WBZ-α method. It is evident from numerical experiments that an explicit implementation of this family of integration methods can save many computational efforts when compared to conventional implicit methods, such as the WBZ-α method.

Comparative studies on numerical optimal design techniques (수치해석에 의한 최적화 설계 기법의 비교 연구)

  • 조선휘;박종근
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.79-85
    • /
    • 1982
  • Computer codes on two numerical optimization methods-Sequentially Unconstrained Minimization Technique (SUMT) and Gradient Projection Method-are constructed and tested with several test problems. Design formulation of tension - compression coil spring is set up and the solution is obtained. Consequently, the feature, the advantage and the limitation of these methods, made clear through the tests, are discussed.

  • PDF

전산구조의 과거와 미래

  • 김형열
    • Computational Structural Engineering
    • /
    • v.9 no.3
    • /
    • pp.60-64
    • /
    • 1996
  • 본 기사에서는 International Journal for Numerical Methods in Engineering(이하 IJNME로 표기)의 창간호에 실린 편집자 논설("Editorial," Vol.1, pp.1-2, 1969)과 창간 25년이 지난 IJNME의 과거와 미래에 관하여 기술한 글(O.C.Zienkiewicz, R.H. Gallagher and R.W.Lewis, "International Journal for Numerical Methods in Engineering: The First 25 Years and the Future," Vol.37, pp.2151-2158, 1994)의 일부분을 각각 2장과 3장에 옮겨 적고자 한다.

  • PDF

Validation of Numerical Codes Applied to Floating Offshore Structures

  • Choi, Hang S.
    • Journal of Hydrospace Technology
    • /
    • v.2 no.1
    • /
    • pp.55-64
    • /
    • 1996
  • Herein a review is made on the validation problem of numerical codes applied to floating offshore structures. Since the dynamic behaviour of offshore floating structures in water waves is in general complex and nonlinear, a numerical approach seems to be promising. However, numerical codes are likely involved with uncertainties and they at the present status show apparent scatterness in typical bechmark tests, particularly in second-order wave forces. Convergence test is the minimum requirement for the validation of numerical codes. Some other practical check points are introduced to clarify the potential error sources. It is concluded that a standard procedure for validation must be urgently established sothat numerical methods can safely be used as a rational design tool.

  • PDF

Comparisons of Empirical Methods with Numerical Analysis on Lateral Flow in Soft Soils (측방유동에 관한 경험식 및 수치해석의 비교)

  • Kim Dae-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.4
    • /
    • pp.665-670
    • /
    • 2006
  • In this paper, the results of empirical methods and the numerical analysis were compared and investigated on the lateral displacement due to embankment in soft soil. The empirical methods gave different results so the possibility of lateral displacement could not be determined only by the empirical methods. The numerical analysis could be used so effectively that its result showed useful lateral and vertical displacements with depth and distance.

  • PDF

A Study on the Methods for Solving the Theodorsen Equation for Numerical Conformal Mapping

  • Song, Eun-Jee
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.1
    • /
    • pp.66-70
    • /
    • 2012
  • Conformal mapping has been a familiar tool of science and engineering for generations. Determination of a conformal map from the unit disk onto the Jordan region is reduced to solving the Theodorsen equation, which is an integral equation for boundary correspondence functions. There are many methods for solving the Theodorsen equation. It is the goal of numerical conformal mapping to find methods that are at once fast, accurate, and reliable. In this paper, we analyze Niethammer’s solution based on successive over-relaxation (SOR) iteration and Wegmann’s solution based on Newton iteration, and compare them to determine which one is more effective. Through several numerical experiments with these two methods, we can see that Niethammer’s method is more effective than Wegmann’s when the degree of the problem is low and Wegmann’s method is more effective than Niethammer’s when the degree of the problem is high.

Moments calculation for truncated multivariate normal in nonlinear generalized mixed models

  • Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.3
    • /
    • pp.377-383
    • /
    • 2020
  • The likelihood-based inference in a nonlinear generalized mixed model often requires computing moments of truncated multivariate normal random variables. Many methods have been proposed for the computation using a recurrence relation or the moment generating function; however, these methods rely on high dimensional numerical integrations. The numerical method is known to be inefficient for high dimensional integral in accuracy. Besides the accuracy, the methods demand too much computing time to use them in practical analyses. In this note, a moment calculation method is proposed under an assumption of a certain covariance structure that occurred mostly in generalized mixed models. The method needs only low dimensional numerical integrations.