• Title/Summary/Keyword: Methodology of Design

Search Result 8,850, Processing Time 0.036 seconds

A Study on the Robust Minimization of Warpage in Injection-Molded Part via the Optimal Design of Rib Geometry and Process Conditions (리브 형상과 공정조건의 최적설계에 의한 사출제품 휨의 안정적 최소화에 관한 연구)

  • Park, Jong-Cheon;Kim, Kyung-Mo;Lee, Jong-Chan;Koo, Bon-Heung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.90-97
    • /
    • 2009
  • In the study, a design methodology for robust minimization of a warpage in injection-molded part is presented. Taguchi's parameter design method is integrated with a computer simulation tool for injection molding to search for best design with robustness against the process variability by noises. The proposed methodology is based on a two-stage process: (1) reducing a warpage in the part by optimizing the part geometry including the layout and size of ribs, and (2) additionally minimizing the warpage by optimizing process conditions. An example is used to illustrate the usefulness of the design methodology.

  • PDF

Design of a Mechanical Artificial Heart Valve Prosthesis Appliing Design Methodology (설계방법론을 이용한 기계식 인공심장판막의 설계)

  • 천길정;류형태
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.291-296
    • /
    • 1998
  • A new mechanical heart valve prosthesis has been designed appling systematic design methodology. The function of the heart valve was defined, and search for design variation has been carried out according to the functional structure, Optimal model among the various variations was determined in view of the design specificationn. Proto type valve was fabricated and test has been carried out using a mock circulation system. It has been observed that the pressure profile, cardiac output and behavior characteristics are generally satisfactory.

  • PDF

DEFORMED BUILDING DESIGN AND FABRICATION BASED ON THE PARAMETRIC TECHNOLOGY

  • Eonyong Kim;Jongjin Park;Hanjong Jun
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1107-1112
    • /
    • 2009
  • To design and build a deformed building, new approaches and technologies are required, in which a design approach with parametric and generative technology is used for design and for building it, computer based fabrication technology. Even if parametric design technology is not a state of the art thing, the technology is still used widely, in order to effect the efficiency and furthermore it will continue to be innovated upon continuously. To cope with the limitation of it, the generative design system is developed. Deformed building design requires new methodology to overcome the limitations of conventional ways, which have difficulties to create enough design alternatives to explore satisfied design solutions order to deformed design have geometrical complexity and dramatically increased amount of data. Hence the generative design system can be a cutting edge methodology to solve it. However we should consider how to build the design in the real world. For this, the computer based fabrication technology which is used in mechanical industry is required to introduce to architecture and construction domain for efficiency. In this research, the methodology is modeled and tested with Bezier surface based shell structure.

  • PDF

Methodology for Establishment of Operational Concept for Speed-Up of Defense Robot and Improvement Direction of the Defense Acquisition System (국방로봇 신속 전력화를 위한 운용개념 수립 방법론 및 획득체계 개선방향)

  • Eom, Hongseob
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.3
    • /
    • pp.182-189
    • /
    • 2018
  • The purpose of this paper is to suggest the methodology for the establishment of operational concept for speed-up of defense robot and improvement direction of the defense acquisition system for the defense robot. In order to achieve this goal, the current defense acquisition system was analyzed into long-term planning, mid-term programming, and project execution stages. And I suggest the methodology for the establishment of operational concept for speed-up of defense robot and direction of development of the defense robot acquisition system considering the characteristics of the robot in terms of core technologies of robot, robot ecosystem and effectiveness-based-robot-design, respectively. Based on the methodology for establishment of the operational concept of defense robot and development direction of the defense acquisition system presented in this study, it will be possible to design efficiently the defense robot in the future.

A Creative Apparel Up-cycling Design Development Using Creative Thinking Methodology

  • Minji Kim
    • Journal of Fashion Business
    • /
    • v.27 no.6
    • /
    • pp.147-159
    • /
    • 2023
  • Fashion is the second most polluting industry. We must strive to transition to a form of industry that does not cause environmental pollution. These efforts drive may fashion brands to produce and sell products with redesigned methods that delight the inventory flow. Accordingly, it is necessary to develop creative apparel up-cycling design using the creative thinking method. This study aims to produce clothing redesign works by introducing design idea types for systematic redesign creation. In this research, we conducted a literature review on the concept of up-cycling design and employed heterotopa spacial concept reflected fashion design creation methodology types. The RE;CODE, a leading domestic up-cycling design brand, was used in case analysis. According to the command of shape transformation, it is spreading, stacking, dropping, inverting and crossing, from the creative thinking method reflecting heterotopia spacial concepts, showing designers a concrete way to transform form into new apparel. Seven works of apparel up-cycling design were developed by conducting process of RE;CODE. Also, to establish an apparel up-cycling design creation process for creating works. In this study, we proposed a systematic method for apparel up-cycling design, including a method for reorganizing two or more different materials to create something new and ultimately reversing the structure. The value and significance of this study is that it proposes a systematic method for apparel up-cycling design to make it new.

The Development of pallet based on the DFSS Methodology and Value Engineering for Lighter Logistics (식스 시그마 DFSS 와 VE 를 이용한 경량 파렛트 설계)

  • Yoon, Min-Su;Whang, Jeong-Feel
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1334-1337
    • /
    • 2007
  • A steel pallet to carry lighter logistic articles is developed based on the DFSS(design for Six Sigma) methodology. Combining the conventional DFSS(Design For Six Sigma) methodology with that of VE(Value Engineering) is the novel feature of this paper to achieve maximum cost reduction. In this paper, systematical steps to achieve the required structural spec's are presented by conventional DMEDI(Define-Measure-Explore-Develop-Implement) process. To imply the target costing, evaluation of functions consisting of the pallet has been performed by value methodology. Then best design concept is selected in the Explore step, following structural optimization utilizing FEM. Finally the performance of prototype is investigated by pilot test in the Implement step. The developed steel pallet is being commercialized in the fields of automated ware house.

  • PDF

Novel Design Methodology using Automated Model Parameter Generation by Virtual Device Fabrication

  • Lee Jun-Ha;Lee Hoong-Joo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.1
    • /
    • pp.14-17
    • /
    • 2005
  • In this paper, an automated methodology for generating model parameters considering real manufacturing processes is presented with verified results. In addition, the outcomes of applications to the next generation of flash memory devices using the parameters calibrated from the process specification decision are analyzed. The test vehicle is replaced with a well-calibrated TCAD simulation. First, the calibration methodology is introduced and tested for a flash memory device. The calibration errors are less than 5% of a full chip operation, which is acceptable to designers. The results of the calibration are then used to predict the I-V curves and the model parameters of various transistors for the design of flash devices.

An Optimal Design Methodology of an Interleaved Boost Converter for Fuel Cell Applications

  • Choe, Gyu-Yeong;Kim, Jong-Soo;Kang, Hyun-Soo;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.319-328
    • /
    • 2010
  • In this paper, an optimal selection methodology for the number of phases will be proposed for an interleaved boost converter (IBC). Also, the analysis of the input current ripple according to CCM and DCM is carried out. The proposed design methodology will be theoretically analyzed, and its validity verified by simulation as well as with experimental results. Moreover, a comparison of cost and efficiency based on a 600W laboratory prototype using the Ballard NEXA 1.2kW PEMFC system is demonstrated.

Methodology for Apartment Space Arrangement Based on Deep Reinforcement Learning

  • Cheng Yun Chi;Se Won Lee
    • Architectural research
    • /
    • v.26 no.1
    • /
    • pp.1-12
    • /
    • 2024
  • This study introduces a deep reinforcement learning (DRL)-based methodology for optimizing apartment space arrangements, addressing the limitations of human capability in evaluating all potential spatial configurations. Leveraging computational power, the methodology facilitates the autonomous exploration and evaluation of innovative layout options, considering architectural principles, legal standards, and client re-quirements. Through comprehensive simulation tests across various apartment types, the research demonstrates the DRL approach's effec-tiveness in generating efficient spatial arrangements that align with current design trends and meet predefined performance objectives. The comparative analysis of AI-generated layouts with those designed by professionals validates the methodology's applicability and potential in enhancing architectural design practices by offering novel, optimized spatial configuration solutions.

Design Methodology of 500 W Wireless Power Transfer Converter for High Power Transfer Efficiency (500 W 급 무선전력전송 컨버터의 고효율 설계 방법)

  • Kim, Mina;Park, Hwapyeong;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.4
    • /
    • pp.356-363
    • /
    • 2016
  • The design methodology of an adequate input voltage and magnetizing inductance to minimize reactive power is suggested to design a wireless power transfer (WPT) converter for high-power transfer efficiency. To increase the magnetizing inductance, the turn number of the WPT coil is increased, thus causing high parasitic resistance in the WPT coil. Moreover, the high coil resistance produces high conduction loss in the transfer and receive coils. Therefore, the analysis of conduction loss is used in the design of the WPT coil and the operating point of the WPT converter. To verify the proposed design methodology, the mathematical analysis of the conduction loss is presented by experimental results.