• Title/Summary/Keyword: Method overloading

Search Result 60, Processing Time 0.021 seconds

The Structure of Java-to-C Compiler for Mobile Computing Environment (모바일 환경을 위한 Java-to-C 컴파일러 구조)

  • 한영선;박인호;황석중;김선욱
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10c
    • /
    • pp.82-84
    • /
    • 2004
  • Java's performance is sometimes not acceptable due to interpretation overhead by the Java Virtual Machine (JVM). In this paper, we present a compiler structure of Java-to-C translator for high performance on resource limited environment like mobile devices. Our compiler framework translates Java into C codes to preserve Java's programming semantics such as inheritance, method overloading, virtual method invocation, and so on. Also our compiler fully supports Connected Limited Device Configuration (CLDC) 1.0 API's. We show that our compiler improves the speedup by up to eleven times more than JVM-only execution in measured benchmarks.

  • PDF

A Probabilistic Evaluation Method on Maximal Flow of Power Systems (최대전력수송능력의 확률론적 평가법)

  • Jeong, M.H.;Yoo, S.H.;Lee, B.;Song, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.911-914
    • /
    • 1998
  • This paper presents an algorithm that evaluates the transfer capability of composite power systems using probabilistic approaches. The reliability indices calculated by using probabilistic method are expected maximal flow, expected transfer capability margin, and expected power not supplied. In this paper, a successive linear programming technique is used to evaluate transfer capability named maximal flow. Physical constraints considered in the maximal flow problem are the limits of toad voltage, line overloading, and real & reactive power generation. Numerical results on IEEE RTS show that the proposed algorithm is effective and useful.

  • PDF

A Study on The Available Transfer Capability(ATC) with Transient Stability Constraints (과도 안정도를 고려한 가용송전용량(ATC) 계산에 관한 연구)

  • Kim, Yang-Il;Jeong, Sung-Won;Gim, Jae-Hyeon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.437-443
    • /
    • 2009
  • In recent years, electric power systems have been experiencing a rapid change due to the increasing electricity market. For the effective use of power system under the deregulated environment, it is important to make a fast and accurate calculation of the maximum available transfer capability (ATC) from a supply point to a demand point. In this paper, the purpose of this research is to calculate ATC fast and accurately for securing the stability of system and raising the efficiency as a result of anticipating transmission congestion according to transmission open access progressed in the future under the regulated environment of electricity market. In this paper, a study utilized a relation of the potential energy and energy function by which calculated CCT and then utilized a relation of PEBS for transient stability ATC calculation. In this paper, ATC was calculated as RPF and Energy Function method and calculation results of each method was compared. Contingence ranking method decided the weak bus by the Eigenvalues of Jacobian matrix and overloading branches by PI-index. As a result, a study proved the fast and accurate ATC calculation method considering transient stability suggested in this paper. Through the case study using New England 39 bus system, it is confirmed that the proposed method can be used for real time operation and the planning of electric market.

A Study on Power Flow and Marginal Factor based on Optimal Power Flow using Nonlinear Interior Point Method under Restructuring Environment (전력산업 구조개편 환경에서 비선형 내점법의 최적조류계산에 의한 전력조류 및 한계계수에 관한 연구)

  • 정민화;남궁재용;권세혁
    • Journal of Energy Engineering
    • /
    • v.11 no.4
    • /
    • pp.291-298
    • /
    • 2002
  • This paper presents a practical methodology that can analysis power flow and marginal factors based on optimal power flow (OPF) of power systems under restructuring environment. First of all, to evaluate useful marginal factors, nonlinear optimization problems of minimum fuel cost and minimum transmission loss are formulated and solved by nonlinear primal-dual interior point method. Here, physical constraints considered in the optimization problems are the limits of bus voltage. line overloading, and real & reactive power generation. Also, an evaluation method of marginal price and marginal transmission loss is presented based on sensitivities calculated by the two OPF problems. Especially, to reflect the cost related to transmission losses in the competitive electricity market, an analysis method of MLF (marginal loss factor) is pro-posed. Numerical results on IEEE RTS 24 show that the proposed algorithm is effective and useful for analysis of power market price.

Simple estimation of Langmuir Parameter by HPLC experiments (HPLC를 이용한 Langmuir Parameter의 추산)

  • Lee, Sun-Mook;Yoon, Tae-Ho;Kim, In-Ho
    • Clean Technology
    • /
    • v.9 no.2
    • /
    • pp.81-85
    • /
    • 2003
  • A simple method of isotherm determination for HPLC is discussed. The equilibrium-dispersive model describing the behavior of elution peaks in HPLC for single component is solved numerically by using PDE solver Macsyma$^{(R)}$(Macsyma Inc., Arlington, MA, USA.) and compared to the experimental data obtained in overloaded isocratic chromatography with caffeine as model species. The effect of sample concentration and flow velocity on the band profiles of elution peaks are described.

  • PDF

An Automatic Block Allocation Methodology at Shipbuilding Midterm Scheduling (조선 중일정 블록 배량 계획 자동화 연구)

  • Hwang, InHyuck;Nam, SeungHoon;Shin, JongGye
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.6
    • /
    • pp.409-416
    • /
    • 2012
  • Most of the shipbuilding scheduling researches so far have been conducted with stress on the dock plan. That is due to the fact that the dock is the least extendable resource in shipyards and its overloading is difficult to resolve. However, once the dock scheduling is completed, it is also important to make a plan that make the best use of the rest of the resources in the shipyard, so that any additional cost is minimized. This study automates block allocation process by analyzing the existing manual process that designates production bays for the blocks during the midterm planning. Also, a planning scenario validation method is suggested, where block allocation scenarios based on diagrams are edited and simulated.

Fault diagnosis of walking beam roller bearing by FTA (FTA(Fault Tree Analysis)기법을 이용한 이송용 대부하 베어링 고장 진단)

  • Bae, Y.H.;Lee, H.K.;Lee, S.J.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.5
    • /
    • pp.110-123
    • /
    • 1994
  • The development of automatic production systems have required inteligent diagnostic and monitoring function to repair system failure and reduce production loss by the failure. In order to perform accurate functions of intelligent system, inferencing about total system failure and fault analysis due to each mechanical component failures are required. Also the solution about repair and maintenance can be suggested from these analysis results. As an essential component of mechanical system, a bearing system is investigated to define the failure behavior. The bearing failure is caused by lubricant system failure, metallurgical defficiency, mechanical condition(vibration, overloading, misalignment) and environmental effect. This study described roller bearing fault train due to stress variation and metallurgical defficiency from lubricant failure by using FTA.

  • PDF

Prediction of Fatigue Crack Propagation Life under Constant Amplitude and Overloading Condition (일정진폭 및 과대하중 하에서의 피로 균열 성장 수명 예측)

  • 이억섭;김승권
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.113-119
    • /
    • 1998
  • Ship structures and aircraft structures are consisted of thin sheet alloy, so it is very important to understand the characteristics of fatigue crack propagation of that material and to establish the data base. The data for fatigue crack propagation behavior scatter very much even under identical experimental conditions with constant loading. The behavior of fatigue crack propagation under regular and irregular cyclic loadings is known to be highly affected by complicated factors such as plastic zone developed at the vicinity of crack tip and reduction of cross sectional area. In this paper, the controlled stress amplitude and overload fatigue crack propagation tests have been conducted to investigate the effect of varying factors such as plastic zone size near the crack tip and area reduction factor (AF) on the fatigue crack propagation behavior A better simulation of fatigue crack propagation behavior is found to be obtainable by using Wheeler and Willenborg models with AF effect.

  • PDF

Process Sequence Design of Longneck Flange by Cold Extrusion Process (냉간압출을 이용한 롱넥 플랜지 성형에 대한 공정설계)

  • 임중연;황병복;김철식
    • Transactions of Materials Processing
    • /
    • v.8 no.2
    • /
    • pp.160-168
    • /
    • 1999
  • This paper is concerned with the process sequence design of longneck flange forming by using cold extrusion with thick hollow pipe. The conventional hot forming process to produce a longneck flange is investigated by thermo-viscoplastic finite element method to observe the metal flow in detail and evaluate design requirements. Based on the results of simulation of the current hot forming process, design strategy for improving the process sequence are developed using the thick hollow pipe. The main goal is to obtain an appropriate improved process sequence which can produce the required product most economically without tensile cracking, workpiece buckling, and overloading of tools. Newly process condition such as semi-die angle, reductio ratio of cross-sectional area of axisymmetrical extrusion process. The final designed process can provide very useful guidelines to other flange forming industries.

  • PDF

A Study on the Temperature Analysis for Cable in Overload and Short of Low Voltage Wiring using Electro-Thermal FEA (전계-열계 유한요소해석을 이용한 저압 배선선로의 과부하 및 단락사고 발생시 전선의 온도해석에 관한 연구)

  • Oh, Hong-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.1
    • /
    • pp.91-96
    • /
    • 2004
  • Overloading of electrical equipment results in excessive currents. As the heat developed in the cables is proportional to square of the current, they get overheated. The insulation on cables is generally made of materials which are damaged easily by excessive temperature. They may therefore lose their insulating properties and lead to short circuits. Since many insulating materials are combustible, they may even catch fire if the temperature rises to their ignition temperature. In this paper, we have simulated the thermal analysis for cable according to the value of current in a overload and a short with the cable of the L's company product(600 V, VV : Four Core) using the electro-thermal finite element method(Flux2D).

  • PDF