0044 @

ZAY 3] /1S FEBEE=EF Vol. 31, No.2

DHY SEE /8 Java—to-C e *=E
BN 2ol HAE UM

138 BRH Al2Y o gtale] 34

{youngsun®, htilil, nzthing, seon}@korea.ac.kr

Youngsun Han®. Inho Park. Seokjoong Hwang. Seon Wook Kim

The Structure of Java-to-C Compiler for Mobile Computing Environment

Advanced Computer Systems and Compiler Laboratory
Dept. of Electronics and Computer Engineering, Korea University

Abstract

Java's performance is sometimes not acceptable due to interpretation overhead by the Java Virtual Machine

(JVM). In this paper, we present a compiler structure of Java-to-C translator for high performance on resource

limited environment like mobile devices. Our compiler framework translates Java into C codes to preserve Java's

programming semantics such as inheritance, method overloading, virtual method invocation, and so on. Also our
compiler fully supports Connected Limited Device Configuration (CLDC) 1.0 APl's. We show that our compiler
improves the speedup by up to eleven times more than JVM-only execution in measured benchmarks.

1. Introduction

Despite of the distinguished advantages over other
programming languages, there are two shortcomings to use

Java, i.e, the size of Java virtual machines and performance

limitation due to interpretation. In order to alleviate the
performance problem, many methods have been proposed,
and such as just-in-time (JIT) compiler and ahead-of-time
compiler.

In this paper, we introduce a Java-to-C compiler for high
performance on resource limited environment like mobile
platforms[1,2]. There are two closely related works in area
of Java-to-C translation(3,4]. Tobal3]
generate standalone Java application which were targeted for
JDK 1.1. It has a bytecode-to-C translator and additional

is a system to

runtime libraries to support garbage collection, thread
management and Java APL In [4], the Java-through-C
compilation system for embedded systems has been

developed. There are the following differences between our
Java-to-C compiler and the others.

During execution of Java application, the mobile system
will make serious efforts to dynamically allocate memory for
Java object and array structures. When we try to allocate
an multi-dimensional array formatted as 10 rows and 10
columns of integer data. While an 100-sized memory block
of integer type will be allocated at one time in C program

.82

by linearization, several steps will required for Java program.
To resolve the problem, our Java-to-C compiler performs
profiling to find if the memory block can be allocated
statically. If the size of the block can be determined during
profiling at program analysis, it will allocate a memory
block for a Java object or an array structures statically.

The exception handling is a helpful function to develop
Java application. It makes easy to correct errors that were
generated at runtime. Some bytecodes are specified in Java
language specification to throw exceptions when a certain
conditions are satisfied. But, the function is not always
necessary. If we assume that a Java application will never
throw any exceptions during execution, we will know that
the exception handling is unnecessary overhead. Our flexible
framework generates different codes

code generation

according to the execution environment.

2. Structure of Java-to~C Compiler

2.1 Overali Architecture

Our Java-to-C compiler is organized into four components: a
class file reader, a bytecode-to~C translator, an application

manager, runtime libraries. Figure 1 represents structure of
the compiler.

200435 1 ARAES] 1S FEAE=TF Vol. 31, No. 2

2.2 Classfile Reader

A java compiler compiles a Java file into several class
files. After each class file is read into a classfile reader, it is
translated into class blocks, which will be used during
Java-to-C compilation process. During the translation of a
classfile, all its associated classfiles would be translated
The block is

such as fields,

certainly needed for the compilation steps.

together. class optimized to maintain

information methods and super class.

2.3 Bytecode-to—C Translator

The compilation process of a bytecode-to-C translator is
divided into two phases, a preprocessor and a translator.
And the translation is performed for each method. The
preprocessor profiles the whole bytecode sequence in a
method to build up a control flow graph (CFG). The control
flow graph is used to adjust status of a virtual stack across
its parent and child basic blocks. The stack -has several
slots to store types of temporary variables and their
information is used for naming variable by numbering
scheme. In the second phase, each basic block of the graph
is translated into C code.

Figure 2 represents the translation process. The prologue
maintains a structure of a symbol table for its enclosing
method, and the symbol table is initialized properly. Similarly
the epilogue finalizes the code emission of the enclosing
method. The compiler visits each basic block node, and
prints out the translated C codes.

Java-to-C compiler

Classfile Reader

L 2

Application Manager

l Bytecode to € Translator]

Runtime Libraries

$ H H

Garbage Thread
Collector Package

Java APIs

Fig.1. Structure of Java-to-C compiler

2.4 Application Manager

The application manager generates a complete C program

83

using the result from the components previously explained.
The generated C program maintains the full features of the
Java platform, such as inheritance, method overloading,
virtual method invocation, and so on. For code generation, it
has prototypes for Java runtime data structures, class
method invocation, garbage collection and a
While the code

generation is performed, the prototypes are copied into the

initialization,
main method to start up C programs.

generated C programs properly.

Basic Block 1
iload_3
ifle
Basic Block 2 Basic Block 3
itoad_2
iload 3 iload_3
iadd istore_1
istore_1
tn Ccode
B81:
i0=1Lvi3
if(10<=0) goto_L14;
B82: | _L10: pc=10;
i0 = Lvi2;
1 =Lvi3;
0=i0+11;
Lvit = i0;
883 94 pc= 14,
i0 = Lvi3;
Lvi1 = i0;

Fig.2. Overview of bytecode-to-C translation process.

2.5 Runtime Libraries

Java platform includes several API's which are able to
invoke native methods. Unfortunately the implementation of
native methods can be changed according to a target
system. So whenever the target system changes, native
Our Java-to-C
Limited

includes native

methods will be directly coded again.
compiler fully supports Connected

Configuration 1.0 (CLDC 1.0) API that
methods. In order to simplify the generated C codes, some

Device

runtime routines were added to runtime library.
3. Performance Evaluation
3.1 Methodology

The performance of our Java-to—C compiler has been tested
using Java SciMark 2.0 benchmarks[5]l. We used the
following systems to compare the performance with ours :

Sun's java interpreter (JDK1.2.2), Tyal.7 JIT compiler{6] and
Shujit JIT compiler[7]. We measured the performance on an

20049 FFAFRAYNY 1S F&AF =R Vol. 31, No.2

workstation with two Zeon 2.0 GHz processors and 512 MB
of memory. The benchmarks were tested(executed) on Linux
Redhat 9.0.

3.2 Performance

The relative speedup to the JVM-only execution (JVM 1.2.2)
on three systems is shown in Figure 3. Our Java-to-C
compiler shows better performance than other systems for
all applications except MonteCarlo. The executable code that
was generated from Java FFT code by our Java-to-C
compiler is about eleven times as fast as the code on JVM
1.2.2. It means that the our compiler performs the following
operations very quickly complex arithmetic, shuffling,
non-constant memory references and trigonometric functions.
Others also could be interpreted with the same scheme.

The single-threaded

application makes that the our system has poor performance

overhead for synchronization in
for Monte Carlo Integration than the others. In our compiler,
even if the application is single-threaded, monitor locking is
enabled. Tobal3] can reduce the synchronization overhead,
since the actual monitor locking is delayed until more than
one thread will be created.

12

3

3

IS

Average Speedup(/JDK1.2.2)
N e

o

Fig.3. Java SciMark 2.0 speedup.
3.3 Aggressive Exception Handling

Our Java-to-C compiler has a flexible code generation
framework. So we can improve the performance without
any additional effort. Figure 4 shows that the elimination of
the system defined exception handling routines will* impr(')'v_e

the performance of the generated code by 1.2 to 3 times.
4. Conclusion

We represent that the Java-to-C compiler can attain
better performance than other approaches, especially the JIT

The mobile
in our Java-to-C compiler makes

compilers. features for computing are
it will

distinguished with the existing Java-to-C

implemented
apparently be
compilers especially Tobal3].

The generated C code include many pointer and complex
expressions, which prevent AOT compilers from applying
advanced compiler optimization techniques like constant
propagation, subexpression elimination, inlining, and so on. In
the ongoing research, we have developed an IR framework
between bytecodes and C codes for helping AOT compiler
generate better quality of codes.

35 r
ENommal

a DAggessive
025
=
o
H
22
L7
o
215
o
°©
&

[+43

0

FFT SOR Monte Carlo SparseMM w
Benchmerks

Fig.4. Speedup by an aggressive excpetion handling
Reference

1. Wireless Internet Platform for Interoperability (WIPI).
http://wipi.or kr

2. GNU Virtual machine(GVM).
http://www.gvmclub.com

3. Todd A. Proebsting, Gregg Townsend, Patrick
Bridges, John H. Hartman, Tim Newsham, and
Scott A. Watterson. Toba: Java for applications: A
way ahead of time (WAT) compiler. In Proceedings
of the 3rd USENIX Conference on Object-Oriented
Technologies and Systems (COQTS97), June 1997.

4. Ankush Varma and Shuvra S. Bhattacharyya.
Java-through-C compilation: An enabling
technology for java in embedded systems. In
Design Automation and Test in Europe (DATEO03),
Paris, France, February 2004.

5. SciMark 2.0.
http://math.nist.gov/scimark2/

6. Tya JIT Compiler.
http://sax.sax.de/ adlibit/

7. shuJIT Compiler.
http//www shudo.net/jit/\ddocs

84

