• Title/Summary/Keyword: Method of delays

Search Result 519, Processing Time 0.036 seconds

Development of Delay Compensator for Network Based Real-time Control Systems (네트워크 기반 실시간 제어 시스템을 위한 지연 보상기 개발)

  • Kim, Seung-Yong;Kim, Hong-Ryeol;Kim, Dae-Won
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.82-85
    • /
    • 2004
  • This paper proposes the development of delay compensator to minimize performance degradation caused by time delays in network-based real-time control systems. The delay compensator uses the time-stamp method as a direct delay measuring method to measure time delays generated between network nodes. The delay compensator predicts the network time delays of next period in the views point of time delays and minimizes performance degradation from network through considering predicted time delays. Control output considering network time delays is generated by the defuzzification of probable time delays of next period. The time delays considered in the delay compensator are modeled by using a timed Petri net model. The proposed delay prediction mechanism for the delay compensator is evaluated through some simulation tests by measuring deviation of the predicted delays from simulated delays.

  • PDF

Delay Analysis Method Considering Productivity (생산성을 고려한 공기지연 분석방법)

  • Koo Ja-Min;Lee Jae-Seob
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.438-441
    • /
    • 2003
  • Construction delays are a common occurrence of most construction projects and difficult to analyze. there are some techniques to analyze delays, such as using CPM, Bar Chart but they are not enough to analyze concurrent and productivity lost delays. Productivity lost delays are different to interruption delays in computing the number of delays and analyzing concurrent delay. This paper describes the delay analysis method considering productivity including concurrent delay analysis.

  • PDF

Be it unresolved: Measuring time delays from unresolved light curves

  • Bag, Satadru;Kim, Alex G.;Linder, Eric V.;Shafieloo, Arman
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.47.4-48
    • /
    • 2021
  • Gravitationally lensed Type Ia supernovae may be the next frontier in cosmic probes, able to deliver independent constraints on dark energy, spatial curvature, and the Hubble constant. Measurements of time delays between the multiple images become more incisive due to the standardized candle nature of the source, monitoring for months rather than years, and partial immunity to microlensing. While currently extremely rare, hundreds of such systems should be detected by upcoming time-domain surveys. Others will have the images spatially unresolved, with the observed lightcurve a superposition of time delayed image fluxes. We investigate whether unresolved images can be recognized as lensed sources given only lightcurve information and whether time delays can be extracted robustly. We develop a method that we show can identify these systems for the case of lensed Type Ia supernovae with two images and time delays exceeding ten days. When tested on such an ensemble the method achieves a false positive rate of ≲5%, and measures the time delays with the completeness of ≳93% and with a bias of ≲0.5% for time delay ≳10 days. Since the method does not assume a template of any particular type of SN, the method has the potential to work on other types of lensed SNe systems and possibly on other transients.

  • PDF

Exponential stability of stochastic static neutral neural networks with varying delays

  • Sun, Xiaoqi
    • Computers and Concrete
    • /
    • v.30 no.4
    • /
    • pp.237-242
    • /
    • 2022
  • This paper is concerned with exponential stability in mean square for stochastic static neutral neural networks with varying delays. By using Lyapunov functional method and with the help of stochastic analysis technique, the sufficient conditions to guarantee the exponential stability in mean square for the neural networks are obtained and some results of related literature are extended.

Delay-dependent Stabilization for Systems with Multiple Unknown Time-varying Delays

  • Wu, Min;He, Yong;She, Jin-Hua
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.682-688
    • /
    • 2006
  • This paper deals with the delay-dependent and rate-independent stabilization of systems with multiple unknown time-varying delays and time-varying structured uncertainties. All the linear matrix inequalities based conditions are derived by employing free-weighting matrices to express the relationships between the terms in the Leibniz-Newton formula. The criteria do not require any tuning parameters. Numerical examples demonstrate the validity of the method.

New Stability Criteria for Linear Systems with Interval Time-varying State Delays

  • Kwon, Oh-Min;Cha, Eun-Jong
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.713-722
    • /
    • 2011
  • In the present paper, the problem of stability analysis for linear systems with interval time-varying delays is considered. By introducing a new Lyapunov-Krasovskii functional, new stability criteria are derived in terms of linear matrix inequalities (LMIs). Two numerical examples are given to show the superiority of the proposed method.

Delay-dependent Robust Stability of Uncertain Dynamic Systems with Time-varying Delays (시변 지연이 존재하는 불확실 동적 시스템의 지연 의존 강인 안정성)

  • Kwon, Oh-Min;Park, Ju-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.181-186
    • /
    • 2009
  • In this paper, the stability analysis for uncertain dynamic systems with time-varying delays is considered. By constructing a new Lyapunov functional, a novel stability criterion is established in terms of linear matrix inequalities (LMIs). Two numerical examples are carried out to support the effectiveness of the proposed method.

A Study on Accuracy Improvement of SBAS Ionospheric Correction Using Electron Density Distribution Model

  • Choi, Bong-Kwan;Han, Deok-Hwa;Kim, Dong-Uk;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.2
    • /
    • pp.59-68
    • /
    • 2019
  • This paper proposed a method to estimate the vertical delay from the slant delay, which can improve accuracy of the ionospheric correction of SBAS. Proposed method used Chapman profile which is a model for the vertical electron density distribution of the ionosphere. In the proposed method, we assumed that parameters of Chapman profile are given and the vertical ionospheric can be modeled with linear function. We also divided ionosphere into multi-layer. For the verification, we converted slant ionospheric delays to vertical ionospheric delays by using the proposed method and generated the ionospheric correction of SBAS with vertical delays. We used International Reference Ionosphere (IRI) model for the simulation to verification. As a result, the accuracy of ionospheric correction from proposed method has been improved for 17.3% in daytime, 10.2% in evening, 2.1% in nighttime, compared with correction from thin shell model. Finally, we verified the method in the SBAS user domain, by comparing slant ionospheric delays of users. Using the proposed method, root mean square value of slant delay error decreased for 23.6% and max error value decreased for 27.2%.

Analysis of Response Characteristics of CAN-Based Feedback Control System Considering Message lime Delays (메시지 지연시간을 고려한 CAN 기반 피드백 제어시스템의 응답특성 분석)

  • Jeon, Jong-Man;Kim, Dae-Won
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.5
    • /
    • pp.190-196
    • /
    • 2002
  • In this paper, the response characteristics of CAN-based feedback control system are analyzed when message time delays through the network are considered. The message time delays are composed of computation time delay and communication time delay. The application layer of CAN communication is modeled mathematically to analyze two time delays, and the communication time delay is redefined under several assumption conditions. The CAN-based feedback control system is proposed as a target system that is the machining system with the three axes. The response characteristics of time delays in the proposed system are analyzed through computer simulations, and can be improved by the compensation using the PID tuning method to satisfy the design specifications of the system.

Delay-dependent Stabilization of Singular Systems with Multiple Internal and External Incommensurate Constant Point Delays

  • Xie, Yong-Fang;Gui, Wei-Hua;Jiang, Zhao-Hui
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.515-525
    • /
    • 2008
  • In this paper, the problem of delay-dependent stabilization for singular systems with multiple internal and external incommensurate constant point delays is investigated. The condition when a singular system subject to point delays is regular independent of time delays is given and it can be easily test with numerical or algebraic methods. Based on Lyapunov-Krasovskii functional approach and the descriptor integral-inequality lemma, a sufficient condition for delay-dependent stability is obtained. The main idea is to design multiple memoryless state feedback control laws such that the resulting closed-loop system is regular independent of time delays, impulse free, and asymptotically stable via solving a strict linear matrix inequality (LMI) problem. An explicit expression for the desired memoryless state feedback control laws is also given. Finally, a numerical example illustrates the effectiveness and the availability for the proposed method.