• Title/Summary/Keyword: Methicillin resistant S

Search Result 259, Processing Time 0.021 seconds

DETECTION OF METHICILLIN OR VANCOMYCIN-RESISTANT STAPHYLOCOCCUS AUREUS FROM DENTAL HOSPITAL (치과병원 진료실 내에서 메티실린 또는 반코마이신 저항성 Staphylococcus aureus의 검출)

  • Min, Jung-Hee;Park, Soon-Nang;Hwang, Ho-Keel;Min, Jung-Beum;Kim, Hwa-Sook;Kook, Joong-ki
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.2
    • /
    • pp.102-110
    • /
    • 2007
  • The purpose of this study was to obtain the basic information for the improvement of dental environment by investigating the presence of methicillin- or vancomycin-resistant Staphylococcus aureus (MRSA or VRSA) isolated from dental health care workers (DHCWs) and environment of the Chosun University Dental Hospital (CUDH) and a private dental clinic (control group). Staphylococcus aureus (S. aureus) was isolated from anterior nares of 42 DHCWS and 38 sites, unit chairss, x-ray devices, computers, etc., at 10 departments of the CUDH and 20 DHCWs and 11 sites at the private dental clinic. S. aureus was isolated on mannitol salt agar plate and confirmed by PCR with S. aureus species-specific primer. Antimicrobial susceptibility test of clinical isolates of S. aureus against several antibiotics including methicillin (oxacillin) was performed by investigating minimum inhibitory concentration (MIC) using broth microdilution assay. In addition, PCR was performed to detect the methicillin- or vancomycin-resistant gene. The data showed that one strain of S. aureus was isolated from DHCWs of the CUDH and three strains of S. aureus was isolated from 3 samples of the private dental clinic, respectively. All of the isolates from the CUDH and the private dental clinic had resistance to penicillin G, amoxicillin and vancomycin and susceptibility to oxacillin and ciprofloxacin. The S. aureus strains were already obtained the resistance to penicillin G and amoxicillin. These results suggest that two dental clinics were under relatively safe environment.

In vitro Antibacterial Activity of DWP20418, a New Carbapenem Antibiotic (새로운 카바페넴계 항생물질인 DWP20418의 In vitro 항균작용)

  • Kim, Ji-Yeon;Choi, Moon-Jung;Park, Nam-Joon;Yim, Seong-Soo;Byun, Young-Seok;Yu, Young-Hyo;Park, Myung-Hwan
    • YAKHAK HOEJI
    • /
    • v.41 no.2
    • /
    • pp.233-240
    • /
    • 1997
  • The in vitro antibacterial activity of DWP20418 (1R, 5S, 6S)-6-[1-(R)-Hydroxyethyl)-l-methyl-2-[(2S,4S)-2-(piperazinylcarbonyl)-1-(R)-hydroxyethyl)pyrrolidine-4-thio]carb apen-2-em-3-carboxylic acid), a new carbapenem antibiotic, was compared with those of imipenem (IPM) and meropenem (MEPM). DWP20418 was comparable or slightly more superior to MEPM against gram-positive bacteria, and it showed more potent activity to IPM against gram-negative bacteria. DWP20418 was particularly active against MRSA, and its $MIC_{90}$ of methicillin-susceptible S. aureus, low methicillin-resistant S. aureus and high methicillin-resistant S. aureus were 0.391, 25 and 50 ${\mu}g/ml$, respectively. With a view of $MIC_{90}$, DWP20418 was comparable than the other carbapenems against P. aeruginosa and E. coli isolates. The activity of DWP20418 was not affected in the presence of $Mg^{2+},\;Ca^{2+}$ or horse serum. But inoculum size and alterations in pH of medium affected its antibacterial activity. DWP20418 showed rapidly bactericidal activity within 1h, and regrowth was not observed even incubation of 24hrs at the concentrations near the MIC.

  • PDF

Coagulase Thping and Antibiotic Resistance of Methicillin Resistant Staphylococcus aureus (MRSA) Isolated form Patients in Pusan (부산지역 환자로부터 분리된 Methicillin Resistant Staphylococcus aureus(MRSA)의 응고효소형 및 항균제 내성에 관한 연구)

  • 류지한;이훈구
    • Korean Journal of Microbiology
    • /
    • v.36 no.3
    • /
    • pp.216-220
    • /
    • 2000
  • Eighty-eight strain3 o~methicillin resistant Stopllylococcus awecis were Isolated from pus (64.7%); spuhm (26.2%), blood, fluid, andurine of 83 patients at Dong-A Hospital in P~~san to invesligate theil-coagulase typ- Ing, and multi-drug resistaut ppattems. The presence of niec A gene confe~~ing melhicillin resistance was tested by polymerase chain reaction (PCR) with uwo mec A gene specific primers using purified clromosonlal DNA as templates. DNA fragments of expected size wel-e detected frorn 86 strains, but not from two strains. !i coagulase typmg, the 86 isolates were assigned to 5 coagulase lypes, I, 11, lll. 1V, VI, VII, VIlI, but there was no isolate helong lo type V. The most abundant coagulase type was type TI(50 %), lollowed by type IV Rest ofthe coagulase types were ininor; ranging fmm 4.5 to 12.5 '% Most of the type I1 ~netlucillin resistant Stapl\ulcorneryiococcus nwem (MRSA) strams were isolated from the generd sulzely ward, but major strains of type IV were Isolated from the otorhinolq~ngology of the hospital's outpatient clinic center. All of the 88 st~nins were sensitive to vancomycin and teicoplanin, but 71 (81%) strains showed multi-drug resitant to penicillin, cephalotl~n, eiythroinycin, gentan~ycin, imipenem, clindamycin, ciprofloxacin and ooxacillin. Yo relationship was found between the antibiotic resistance pattems aud the coagulase typing patterns.

  • PDF

Complete Genome Sequence of Staphylococcus aureus strain 21SAU_AGRO3 Isolated from Korean Agricultural Products

  • Sojin Ahn;Eunbyeol Ahn;So Yun Jhang;Misun Jeong;Sangryeol Ryu;Seoae Cho
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.4
    • /
    • pp.555-558
    • /
    • 2023
  • Staphylococcus aureus is a prominent multidrug-resistant pathogen known for its resistance to a variety of antibiotics. To combat this, a wide range of antibiotics, including quinolones, is utilized. While the efficacy of quinolones against S. aureus has been established, the rise in quinolone-resistant strains, particularly in methicillin-resistant S. aureus (MRSA), has necessitated a shift in their usage patterns. Genomic sequencing plays a crucial role as it offers insights into the genetic mechanisms of resistance. Thus, we report the complete genome sequence of an oxolinic acid-resistant strain of S. aureus isolated from sweet potato leaves, a crop commonly cultivated in Korea.

Anti-bacterial Effect of Oenothera lamarckiana Aerial Part Extract

  • Yang, Ji Yeong;Lee, Pyoengjae;Kim, Sa-Hyun
    • Biomedical Science Letters
    • /
    • v.26 no.4
    • /
    • pp.383-388
    • /
    • 2020
  • Ingestion of food contaminated with microorganism, if not always, could lead to severe health problem. Preservatives has been added to food to prevent food from being contaminated with microorganism. But, these have potential to threaten the health. Therefore, much effort has been taken to find the safe materials showing the anti-microbial activity. In this study, we investigated the anti-bacterial activity of Oenothera lamarckiana aerial part extract against eight bacteria strain. In paper disc assay, extract inhibited the growth of Staphylococcus aureus, Methicillin-resistant S. aureus, Bacillus cereus and Shigella dysenteriae at 200 μg/disc, but not against Escherichia coli, E. coli O157:H7, Salmonella Typhi and S. enteritidis. Minimum inhibitory concentration (MIC) against Staphylococcus aureus, Methicillin-resistant S. aureus, Bacillus cereus and Shigella dysenteriae is 250, 250, 500 and 500 μg/mL, respectively. Compared with reported MIC of other plant resources, O. lamarckiana aerial part extract showed the relatively high anti-bacterial activity. O. lamarckiana aerial part could be suitable for the preservative development. But, it still remains to be studied to evaluate safety and so on.

In vitro Antibacterial Activities of Novel Fluoroquinolone DWP20367 (신합성 플로로퀴놀론계 항생물질인 DWP20367의 In vitro 항균효과)

  • Kim, Ji-Yeon;Choi, Moon-Jung;Han, Seung-Hee;Shim, Jeom-Soon;Jung, Yeon-Eui;Son, Ho-Jung;Lee, Jae-Wook;Yu, Young-Hyo;Park, Myung-Hwan
    • YAKHAK HOEJI
    • /
    • v.41 no.2
    • /
    • pp.225-232
    • /
    • 1997
  • The in vitro antibacterial activity of DWP20367 (1-Cyclopropyl-6-fluoro-8-chloro-7-(2,7-diazabicyclo[3,3,0]oct-4-ene-7-yl)-1,4-dihydro-4-oxoquinoline-3-carboxylic acid), a new broad-spectrum fluoroquinolone, was compared with those of ciprofloxacin (CPFX), sparfloxacin (SPFX) and ofloxacin (OFLX). DWP20367 was showed antibacterial activity much higher than CPFX, SPFX and OFLK against gram-positive bacteria, while it was slightly more superior to quinolones against gram-negative bacteria. DWP20367 was particularly effective against MRSA, and its $MlC_{90}$ against clinical isolates of methicillin-susceptible S. aureus, low methicillin-resistant S. aureus and high methicillin-resistant S. aureus were 0.098, 0.781 and 1.563 micro g/ml, respectively. Against S. pneumoniae, MIC90 of DWP20367 was 2- to 8-fold higher than those of CPFX. With a view of MIC90, DWP20367 showed slightly more potent activity against P. aeruginosa and E. coli isolates than the control quinolones. DWP20367 activity was not affected by inoculum size and medium pH. But addition of $Mg^{2+}, \;Ca^{2+} $Mg2+, Ca2+ or horse serum (25%) decreased its antibacterial activity. DWP20367 was showed rapidly bactericidal activity within 2 to 4 h, and regrowth was not observed even after 24 h incubation at concentrations near the 4-fold of MIC.

  • PDF

Antibacterial Activity of JiYu-san Against Methicillin-resistant Staphylococcus aureus (Methicillin resistant staphylococcus aureus에 대한 지유산의 항균활성)

  • Hwang, Hae;Kang, Ok-Hwa;Kwon, Dong-Yeul
    • Korean Journal of Pharmacognosy
    • /
    • v.53 no.2
    • /
    • pp.87-95
    • /
    • 2022
  • Methicillin resistance Staphylococcus aureus (MRSA) is a gram-positive bacterium, the most commonly isolated bacterial human pathogen. JiYu-san is one of the natural products used to treat diseases in the folk recipe. In this study, we investigated the antimicrobial activity of EtOH 70% extracts of JiYu-san (JYS) against MRSA. The antibacterial activity of JYS against MRSA strain was evaluated using minimum inhibitory concentration (MIC), checkerboard dilution test, and time-kill assay. The effect of JYS on the immune mechanism of MRSA was confirmed through cell membrane permeability tests and energy metabolism tests, and the antibacterial activity mechanism was performed using qRT-PCR and western blot. As a result, in the antibacterial test of JYS, the MIC was measured to be 1.9~1000 ㎍/mL, and synergistic or showed a partial synergistic effect. In addition, JYS showed antibacterial activity in a combination test with DCCD or TX-100. In a study on the mechanism of action of antibacterial activity, it was found that JYS suppressed MRSA resistance genes and proteins. These results suggest that JYS has antibacterial activity and provides great potential as a natural antibiotic by modulating the immune mechanism against MRSA.

Antimicrobial Activity of Pseudomonas aeruginosa BCNU 1204 and Its Active Compound (Pseudomonas aeruginosa BCNU 1204의 항균활성과 활성 물질)

  • Shin, Hwa Jin;Joo, Woo Hong
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.84-89
    • /
    • 2019
  • Previous screening of novel antibacterial agents revealed that some bacterial isolates exhibited antibiotic activity against both gram-positive and gram-negative bacteria and that they showed antibacterial activity, even against methicillin-resistant Staphylococcus aureus (MRSA). Among these isolates, one bacterial strain, BCNU 1204, was identified as Pseudomonas aeruginosa using phenetic and phylogenetic analysis, based on 16S ribosomal RNA gene sequences. The maximum productivities of antimicrobial substances of BCNU 1204 were obtained after being cultured at $35^{\circ}C$ and pH 7.0 for 4 d in King's medium B (KMB). Dichloromethane (DCM) and ethylacetate (EA) extracts of P. aeruginosa BCNU 1204 exhibited strong antimicrobial activity, particularly against gram-positive bacteria. The EA extracts exhibited broad-spectrum activity against antibiotic resistant strains. Fraction 5-2, was obtained by recycling preparative liquid chromatography (LC) and preparative thin-layer chromatography (TLC) and was identified as phenazine-1-carboxylic acid belonging to phenazines using gas chromatography and mass spectrometry (GC/MS). Its minimum inhibitory concentration (MIC) values were $25{\mu}g/ml$, $50{\mu}g/ml$, ${\geq}25{\mu}g/ml$, and ${\geq}50{\mu}g/ml$ for MRSA CCARM 3089, 3090, 3091, and 3095 strains, respectively. P. aeruginosa BCNU 1204 may be a potential resource for the development of anti-MRSA antibiotics. Additional research is required to identify the active substance from P. aeruginosa BCNU 1204.