Browse > Article
http://dx.doi.org/10.5352/JLS.2019.29.1.84

Antimicrobial Activity of Pseudomonas aeruginosa BCNU 1204 and Its Active Compound  

Shin, Hwa Jin (Department of Biology and Chemistry, Changwon National University)
Joo, Woo Hong (Department of Biology and Chemistry, Changwon National University)
Publication Information
Journal of Life Science / v.29, no.1, 2019 , pp. 84-89 More about this Journal
Abstract
Previous screening of novel antibacterial agents revealed that some bacterial isolates exhibited antibiotic activity against both gram-positive and gram-negative bacteria and that they showed antibacterial activity, even against methicillin-resistant Staphylococcus aureus (MRSA). Among these isolates, one bacterial strain, BCNU 1204, was identified as Pseudomonas aeruginosa using phenetic and phylogenetic analysis, based on 16S ribosomal RNA gene sequences. The maximum productivities of antimicrobial substances of BCNU 1204 were obtained after being cultured at $35^{\circ}C$ and pH 7.0 for 4 d in King's medium B (KMB). Dichloromethane (DCM) and ethylacetate (EA) extracts of P. aeruginosa BCNU 1204 exhibited strong antimicrobial activity, particularly against gram-positive bacteria. The EA extracts exhibited broad-spectrum activity against antibiotic resistant strains. Fraction 5-2, was obtained by recycling preparative liquid chromatography (LC) and preparative thin-layer chromatography (TLC) and was identified as phenazine-1-carboxylic acid belonging to phenazines using gas chromatography and mass spectrometry (GC/MS). Its minimum inhibitory concentration (MIC) values were $25{\mu}g/ml$, $50{\mu}g/ml$, ${\geq}25{\mu}g/ml$, and ${\geq}50{\mu}g/ml$ for MRSA CCARM 3089, 3090, 3091, and 3095 strains, respectively. P. aeruginosa BCNU 1204 may be a potential resource for the development of anti-MRSA antibiotics. Additional research is required to identify the active substance from P. aeruginosa BCNU 1204.
Keywords
Antimicrobial activity; methicillin-resistant Staphylococcus aureus (MRSA); phenazine compounds; phenazine-1-carboxylic acid; Pseudomonas aeruginosa;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chebbi, A., Hentati, D., Zaghden, H., Baccar, N., Rezgui, F., Chalbi, M., Sayadi, S. and Chamkha, M. 2017. Polycyclic aromatic hydrocarbon degradation and biosurfactant production by a newly isolated Pseudomonas sp. strain from used motor oil-contaminated soil. Int. Biodeter. Biodegr. 122, 128-140.   DOI
2 Chin-A-Woeng, T. F. C., Bloemberg, G. V., van der Bij, A. J., van der Drift, K. M. G. M., Schripsema, J., Kroon, B., Scheffer, R. J., Keel, C., Bakker, P. A. H. M., Tichy, H. V., de Bruijin, F. J., Thomas-Oates, J. and Lugtenberg, B. 1998. Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici. Mol. Plant Microbe Interact. 11, 1069-1077.   DOI
3 Harney, A. 2000. Strategies for discovering drugs from previously unexplored natural products. Drug Discov. Today 5, 294-300.   DOI
4 Hasan, R., Acharjee, M. and Noor, R. 2016. Prevalence of vancomycin resistant Staphylococcus aureus (VRSA) in methicillin resistant S. aureus (MRSA) strains isolated from burn wound infections. Tzu. Chi. Med. J. 28, 49-53.   DOI
5 Jain, R. and Pandey, A. 2016. A phenazine-1-carboxylic acid producing polyextremophilic Pseudomonas chlororaphis (MCC 2693) strain, isolated from mountain ecosystem, possesses biocontrol and plant growth promotion abilities. Microbiol. Res. 190, 63-71.   DOI
6 Lee, A. J., Suh, H. S., Jeon, C. H. and Kim, S. G. 2011. Prevalence and clinical characteristics of mupirocin-resistant Staphylococcus aureus. Kor. J. Clin. Microbiol. 14, 18-23.   DOI
7 Mishra, J. and Arora, N. K. 2018. Secondary metabolites of fluorescent pseudomonads in biocontrol of phytopathogens for sustainable agriculture. Appl. Soil Ecol. 125, 35-45.   DOI
8 Murray P. R., Baron, E. J., Pfaller, M. A., Tenover, F. C. and Yolke, R. H. 1999. Manual of Clinical Microbiology, pp. 1527-1539, 7th ed., ASM: Washington, DC, USA.
9 Shoji, J., Hinoo, H., Kato, T., Hattori, T., Hirooka, K., Tawara, K., Shiratori, O. and Terui, Y. 1989. Isolation of cepafungins I, II and III from Pseudomonas species. J. Antibiot. 23, 783-787.
10 Thomashow, L. S. and Weller, D. M. 1988. Role of phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J. Bacteriol. 170, 3499-3508.   DOI
11 Saito, N. and Nei, M. 1987. The neighbor-joining method, a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 79, 426-434.
12 Shanmugaiah, V., Mathivanan, N. and Varghese, B. 2009. Purification, crystal structure and antimicrobial activity of phenazine-1-carboxamide produced by a growth-promoting biocontrol bacterium, Pseudomonas aeruginosa MML2212. J. Appl. Microbiol. 108, 703-711.   DOI
13 Sutter, V. L., Kwok, Y. Y. and Finegold, S. M. 1973. Susceptibility of Bacteroides fragilis to six antibiotics determined by standardized antimicrobial disc susceptibility testing. Antimicrob. Agents Chemother. 3, 188-193.   DOI
14 Leisinger, T. and Margraff, R. 1979. Sencondary metabolites of the fluorescent Pseudomonads. Microbiol. Rev. 43, 422-442.   DOI
15 Cardozo, V. F., Oliveira, A. G., Nishio, E. K., Perugini, M. R., Andrade, C. G., Silveira, W. D., Duran, N., Andrade, G., Kobayashi, R. K. T. and Nakazato, G. 2013. Antibacterial activity of extracellular compounds produced by a Pseudomonas strain against methicillin-resistant Staphylococcus aureus (MRSA) strains. Ann. Clin. Microb. Anti. 12, 12.   DOI
16 Upadhyay, A. and Srivastava, S. 2011. Phenazine-1-carboxylic acid is a more important contributor to biocontrol Fusarium oxysporum than pyrrolnitrin in Pseudomonas fluorescens strain Psd. Microbiol. Res. 166, 323-335.   DOI
17 Borrero, N. V., Bai, F., Perez, C., Duong, B. Q., Rocca, J. R., Jin, S. and Huigens III, R. W. 2014. Phenazine antibiotic inspired discovery of potent bromophenazine antibacterial agents against Staphylococcus aureus and Staphylococcus epidermidis. Org. Biomol. Chem. 12, 881-886.   DOI
18 Brisbane, P. G. and Rovira, A. D. 1988. Mechanism of inhibition of Gaeumannomyces graminis var. tritici by Fluorescent Pseudomonads. Plant Pathol. 37, 104-111.   DOI