• Title/Summary/Keyword: Methanol Crossover

Search Result 59, Processing Time 0.023 seconds

Effects of environmental temperature on the performance of direct methanol fuel cell for vehicles (외부온도가 수송용 메탄올연료전지 성능에 미치는 영향)

  • Han, Chang-Hwa;Jung, Dae-Seung;Choi, Ji-Sun;Han, Sang-Hun;Lee, Joong-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.176-179
    • /
    • 2009
  • The performance of direct methanol fuel cells is affected by operating conditions such as, methanol feeding temperatures, methanol concentrations, and methanol flow rates during the operation in different environmental conditions. In this study, effects of the environmental temperature on performance of direct methanol fuel cells have been investigated in order to test a applicability of direct methanol fuel cell to the vehicle. The environmental temperature (ET) was varied from $-20^{\circ}C$ to $+30^{\circ}C$. The inside fuel cell temperature (CT) during test at various operating conditions was monitored and the performance of fuel cell was measured in the I-V polarization curve. With increasing the ET, the performance of the fuel cell was significantly improved and the CT also almost linearly increased. However, at below $0^{\circ}C$ ET, the DMFC showed very poor performance and needed to control CT or methanol feeding temperature (MFT), methanol flow rate(MFR) to obtain enough power of the vehicle.

  • PDF

Phosphate-decorated Pt Nanoparticles as Methanol-tolerant Oxygen Reduction Electrocatalyst for Direct Methanol Fuel Cells

  • Choi, Jung-goo;Ham, Kahyun;Bong, Sungyool;Lee, Jaeyoung
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.354-361
    • /
    • 2022
  • In a direct methanol fuel cell system (DMFC), one of the drawbacks is methanol crossover. Methanol from the anode passes through the membrane and enters the cathode, causing mixed potential in the cell. Only Pt-based catalysts are capable of operating as cathode for oxygen reduction reaction (ORR) in a harsh acidic condition of DMFC. However, it causes mixed potential due to high activity toward methanol oxidation reaction of Pt. To overcome this situation, developing Pt-based catalyst that has methanol tolerance is significant, by controlling reactant adsorption or reaction kinetics. Pt/C decorated with phosphate ion was prepared by modified polyol method as cathode catalyst in DMFC. Phosphate ions, bonded to the carbon of Pt/C, surround free Pt surface and block only methanol adsorption on Pt, not oxygen. It leads to the suppression of methanol oxidation in an oxygen atmosphere, resulting in high DMFC performance compared to pristine Pt/C.

Competitiveness of Formic Acid Fuel Cells: In Comparison with Methanol (포름산 연료전지의 경쟁력)

  • Uhm, Sunghyun;Seo, Minhye;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.123-127
    • /
    • 2016
  • Methanol fuel cells having advantages of relatively favorable reaction kinetics and higher energy density have attracted increasing interests as best alternative to hydrogen fuel cell because of H2 production, storage and distribution issues. While there have been extensive research works on developing key components such as electrocatalysts as well as their physicochemical properties in practical formic acid fuel cells, there have also been urgent requests for investigating which fuel sources will be more suitable for direct liquid fuel cells in future. In this mini-review, we highlight the overall interest and outlook of formic acid fuel cells in terms of electrocatalysts, fuel supply and crossover, water management, fuel cell efficiency and system integration in comparison with methanol fuel cells.

PVA/PAM/Zirconium phosphate Composite Membrane for Proton Exchange Membranes (PVA/PAM/Zirconium phosphate 복합막의 제조)

  • 황호상;임지원
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05b
    • /
    • pp.199-202
    • /
    • 2004
  • DMFC 성능을 개선시키기 위한 연구의 큰 영역은 고분자전해질막에 있으며 methanol crossover에 대한 영향을 최소화시킬 수 있는 소재개발이 우선적으로 요구되는 실정이다. 이러한 문제의 해결을 위해 Pivovar와 Cussler [1] 등은 투과증발 막분리공정에서 메탄올 저항체로 잘 알려진 폴리비닐알콜(poly vinyl alcohol, PVA)를 이용한 전해질막 연구를 하였다.(중략)

  • PDF

Experimental Validation of a Direct Methanol Fuel Cells(DMFCs) model with a Operating Temperatures and Methanol Feed Concentrations (직접메탄올 연료전지의 농도 및 온도변화에 따른 실험적 검증)

  • Kang, Kyungmun;Ko, Johan;Lee, Giyong;Ju, Hyunchul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.125.2-125.2
    • /
    • 2010
  • In this paper, both theoretical and experimental investigations have been performed to examine the effects of key operating parameters on the cell performance of a DMFCs (i.e., methanol feed concentration and operating temperature). For experiment, the membrane electrode assemblies (MEAs) were prepared using a conventional MEA fabrication method based on a catalyst coated electrode (CCE) and tested under various cell temperatures and methanol feed concentrations. The polarization curve measurements were conducted using in-house-made $25cm^2$ MEAs. The voltage-current density data were collected under three different cell temperatures ($50^{\circ}C$, $60^{\circ}C$, and $70^{\circ}C$) and four different methanol feed concentrations (1 M, 2 M, 3 M, and 4 M). The experimental data indicate that the measured I-V curves are significantly altered, depending on these conditions. On the other hand, previously developed one-dimensional, two-phase DMFC model is simulated under the same operating conditions used in the experiments. The model predictions compare well with the experimental data over a wide range of these operating conditions, which demonstrates the validity and accuracy of the present DMFC model. Furthermore, both simulation and experimental results exhibit the strong influences of methanol and water crossover rates through the membrane on DMFC performance and I-V curve characteristics.

  • PDF

In-Situ Analysis of Overpotentials in Direct Methanol Fuel Cell by Using Membrane Electrode Assembly Composed of Three Electrodes (삼전극으로 구성된 막전극접합체를 이용한 직접메탄올 연료전지의 실시간 과전압 분석)

  • Jung, Namgee;Cho, Yoon-Hwan;Cho, Yong-Hun;Sung, Yung-Eun
    • Korean Journal of Materials Research
    • /
    • v.28 no.6
    • /
    • pp.330-336
    • /
    • 2018
  • In this study, a membrane electrode assembly(MEA) composed of three electrodes(anode, cathode, and reference electrode) is designed to investigate the effects of methanol concentration on the overpotentials of anode and cathode in direct methanol fuel cells(DMFCs). Using the three-electrode cell, in-situ analyses of the overpotentials are carried out during direct methanol fuel cell operation. It is demonstrated that the three-electrode cell can work effectively in transient state operating condition as well as in steady-state condition, and the anode and cathode exhibit different overpotential curves depending on the concentration of methanol used as fuel. Therefore, from the real-time separation of the anode and cathode overpotentials, it is possible to more clearly prove the methanol crossover effect, and it is expected that in-situ analysis using the three-electrode cell will provide an opportunity to obtain more diverse results in the area of fuel cell research.

Effect of the Molecular Weight of Poly(vinyl alcohol) Blended with Sulfonated Polysulfone Membranes for Fuel Cell Applications

  • Chang, Sung-Hyuk;Chung, Sung-Il;Rhim, Ji-Won
    • Korean Membrane Journal
    • /
    • v.5 no.1
    • /
    • pp.18-24
    • /
    • 2003
  • In order to improve the mechanical properties of the sulfonated polysulfone (SPSf) membranes previously synthesized in our laboratory, poly(vinyl alcohol) (PVA) was blended which is well known as the excellent physical and chemical properties. The resulting membranes blended with several molecular weight of PVA varying from 13,000 to 124,000 have been characterized to investigate the effect of PVA molecular weight in terms of ion conductivities, methanol permeabilities, water contents and ion exchange capacities for both heat treated and untreated membranes at 150$^{\circ}C$. The proton conductivity is decreased as the molecular weight of PVA increases. The plain SPSf-6.0 showed the proton conductivity of 0.078 S/cm whereas the blended membrane with M.W. 31,000 PVA indicated 0.04 S/cm. For methanol permeabilities, when PVA is added to SPAf-6.0, methanol crossover is increased because of the gain of the hydrophilicity from 3.4 to 6.5${\times}$10$\^$-6/ $\textrm{cm}^2$/s. For the annealed blended membranes (with M.W. 31,000 PVA), both the methanol corssover and proton conductivity showed very consistent values, about 2.3${\times}$10$\^$-6/ $\textrm{cm}^2$/s and 0.036 S/cm, respectively.

Development of portable DMFC systems (휴대용 직접 메탄올 연료전지 시스템 개발)

  • Moon, Go-Young;Kim, Hyuk;Yoo, Hwang-Chan;Noh, Tae-Geun;Lee, Won-Ho
    • New & Renewable Energy
    • /
    • v.3 no.1 s.9
    • /
    • pp.46-53
    • /
    • 2007
  • Direct Methanol Fuel Cell, DMFC is a potential power source for portable IT application. DMFC works at low temperature ($<100^{\circ}C$) without fuel processing. Methanol has high energy density, fuel economy, and easiness to handle. This paper focuses high efficient catalyst to increase utilization in the electrode, new membrane reducing methanol crossover, new material parts, and optimization of system integration. Lightweight and small-sized DMFC based on new materials, efficient stack, and improved system control will be applied to the 50W prototype system for the notebook computer.

  • PDF

Analytical Study on the Oscillating Flow Effect in a Anode Channel of Direct Methanol Fuel Cells (연료극 왕복유동이 직접 메탄올 연료전지에 미치는 영향에 대한 해석적 연구)

  • Hwang, Yong-Sheen;Lee, Dae-Young;Kim, Seo-Young;Choi, Hoon;Cha, Suk-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.27-30
    • /
    • 2007
  • This study considers the feasibility of the concentration control of the methanol solution by oscillating flow in the anode channel of passive type Direct Methanol Fuel Cells(DMFC). DMFC stack performance is largely influenced by the fuel concentration. If the fuel concentration is either lower than 0.5M or more than 2M, its performance deteriorates seriously because of the fuel starvation or the fuel crossover. In this respect the optimization of the fuel concentration is crucially important to maximize the DMFC stack performance. In this work, the effects of oscillating actuation in the fuel supply are studied to control the fuel concentration. Two important nondimensional parameters are introduced, each of which represents either the oscillating frequency or the oscillating amplitude. It is shown how these factors affect the stack performance and the efficiency of the DMFC stack.

  • PDF

Proton Exchange Membranes using Polymer Blends of PVA(Polyvinyl alcohol)/PSSA-MA(Polystyrene sulfonic acid-co-maleic acid)

  • Knag, Moon-Sung;Kim, Jong-Hak;Kim, Hyunyoo;Jongok Won;Moon, Seung-Hyeon;Kang, Yong-Soo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.29-32
    • /
    • 2004
  • Reduction of methanol crossover in proton exchange membranes (PEMs) can be achieved by 1) the selection of materials, 2) the morphology control, and 3) the adequate crosslinking [1, 2]. The selection of polymer matrix of PEM for direct methanol fuel cells (DMFCs) is very important because the proton conductivity and methanol permeability are largely dependent upon the properties of polymers.(omitted)

  • PDF