• 제목/요약/키워드: Methanol Conversion Efficiency

검색결과 25건 처리시간 0.022초

마이크로 연료전지용 수소개질기내 전달현상 특성 연구 (Transport Phenomena in a Steam Methanol Microreformer for Fuel Cell)

  • 서정세
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.3-8
    • /
    • 2008
  • Effect of external heating rate on the conversion efficiency for the steam reforming of methanol is investigated numerically considering both heat and mass transfer of the species in a packed bed microreactor. In a results from the numerical simulation, the conversion efficiency of methanol has been obtained for the external heating rate. The axial variation of mole fraction of methanol has been additionally presented for several cases of external heating rates. The results show that for the constant inlet temperature condition the conversion efficiency of methanol increases with external heating rate over the range of operating conditions.

  • PDF

NaBO2의 석출 방지를 위한 첨가제가 NaBH4 가수분해의 수소발생특성에 미치는 영향 (Effect of Additives for Prevention of NaBO2 Precipitation on Hydrogen Generation Properties of NaBH4 Hydrolysis)

  • 오택현;권세진
    • 한국수소및신에너지학회논문집
    • /
    • 제24권1호
    • /
    • pp.1-11
    • /
    • 2013
  • Additives such as glycerol, methanol, acetone, and ethanol were used to prevent $NaBO_2$ from precipitation, and their effects on hydrogen generation properties of $NaBH_4$ hydrolysis were investigated. When the concentration of additives was 5 wt%, the additives such as methanol, acetone, and ethanol could not prevent $NaBO_2$ precipitation. Although glycerol prevented $NaBO_2$ precipitation, conversion efficiency decreased to 78.0% due to its viscosity. Based on test results, hydrogen generation tests were also performed at various concentration of glycerol and methanol to investigate the concentration effects on hydrogen generation properties. As the concentration of glycerol increased from 1 wt% to 3 wt%, conversion efficiency increased owing to additive effect. When its concentration increased to 5 wt%, conversion efficiency decreased due to its viscosity. As the concentration of methanol increased from 5 wt% to 10 wt%, conversion efficiency increased owing to additive effect. When its concentration increased to 15 wt%, conversion efficiency decreased due to $NaB(OCH_3)_4$ precipitate. Although conversion efficiency decreased about 1% when 3 wt% glycerol was added, $NaBO_2$ precipitation was prevented. Consequently, addition of 3 wt% glycerol to $NaBH_4$ solution improves stability of hydrogen generation system.

곡유로 채널을 가지는 수증기-메탄올 개질기에서 유량 변화에 따른 메탄올 전환율 및 물질 전달에 관한 연구 (Study on Methanol Conversion Efficiency and Mass Transfer of Steam-Methanol Reforming on Flow Rate Variation in Curved Channel)

  • 장현;박인성;서정세
    • 대한기계학회논문집B
    • /
    • 제39권3호
    • /
    • pp.261-269
    • /
    • 2015
  • 본 연구에서는 전산유체역학 상용 코드를 이용하여 곡유로 채널형 수소 개질기에 대한 수치 해석적 연구를 수행하였다. 상용코드에서 제공하는 연소모델의 사전 검증을 위하여 원통 채널형 개질기 형를 가지는 선행연구모델(23)에 대한 수치해석을 선행하여 수행하였고, 95% 이상 일치하는 결과를 얻을 수 있었다. 선행연구모델의 수치해석을 통해 연소모델에 대한 해석 타당성검증이 완료된 후, 반응기 형태 변화가 메탄올 전환율과 수소생성에 미치는 영향을 파악하여 기존보다 유로의 길이가 증가한 곡유로 채널형 개질기를 설계하고, 유량조건($10/15/20{\mu}l/min$)을 변수로 수치해석을 수행하였다. 그 결과 원통 채널형 개질기와 곡유로 채널형 개질기에서 발생하는 유동 특성 및 물질전달 특성을 파악할 수 있었고, 그리고 유량에 따른 메탄올 전환율 및 수소 생성에 관한 유용한 정보를 얻을 수 있었다.

곡유로 메탄올-수증기 개질기 공극률 및 온도 변화에 따른 물질 전달 및 메탄올 전환율에 대한 수치해석적 연구 (A Numerical Study on Mass Transfer and Methanol Conversion Efficiency According to Porosity and Temperature Change of Curved Channel Methanol-Steam Reformer)

  • 성홍석;이충호;서정세
    • 대한기계학회논문집B
    • /
    • 제40권11호
    • /
    • pp.745-753
    • /
    • 2016
  • 초소형 연료전지용 메탄올-수증기 개질기의 경우 저온상태($250^{\circ}C$ 이하)에서 수증기와 반응하여 개질반응이 일어나기 때문에 수소를 효율적으로 생산할 수 있다. 본 연구는 이러한 개질기에 대하여 수치해석적 연구를 수행하였다. 먼저, 개질기 벽면 온도를 100, 140, 180, $220^{\circ}C$로 설정하였고 메탄올 전환율은 각 0, 0.072, 3.83, 46.51%로 나타났다. 다음으로 촉매의 공극률을 0.1, 0.35, 0.6, 0.85로 설정하였고, 메탄올 전환율에는 큰 차이가 없었으나 압력강하 값이 각 4645.97, 59.50, 5.12, 0.45 kPa로 나타났다. 메탄올-수증기 개질기는 $180^{\circ}C$ 이하의 온도에서는 거의 반응하지 않으며 공극률은 개질기를 흐르는 유체가 개질기와 충분히 접촉하여 활성화 에너지를 낮추어 준다면 메탄올 전환율에 크게 영향을 미치지 않는다는 것을 확인하였다.

메탄자화균 Methylosinus trichosporium OB3b의 성장 속도와 수율 : I. 실험적 고찰 (Growth Rate and Yield of a Methanotrophic Bacterium Methylosinus Trichosporium OB3b : I. Experimental Measurements)

  • 황재웅;송효학;박성훈
    • KSBB Journal
    • /
    • 제13권4호
    • /
    • pp.391-398
    • /
    • 1998
  • The effect of culture medium copper availability on the specific growth rate(${\mu}$) and carbon conversion efficiency (CCE) was sutided for an obligatory methanotroph Methylosinus trichosporium OB3b under various combinations of carbon and nitrogen sources. Methane or methanol was used as a carbon source, and nitrate or ammonium was used as a nitrogen source. Medium copper availability determined the intracellular location or kind of methane monooxygenase (MMO), cell-membrane (particulate or pMMO) when copper was present and cytoplasm (soluble or sMMO) when copper was deficient. When methane was used as a carbon source, copper-containing medium exhibited higher ${\mu}$ and CCE than copper-free medium regardless of the kind of nitrogen source. When methanol was used as a carbon source, however, the effect of copper disappeared. Ammonium gave the higher ${\mu}$ and CCE than nitrate for both methane and methanol. Those observation suggest that there exist an important difference in energy utilization efficiency for methane assimilation between sMMO and pMMO.

  • PDF

Batch Conversion of Methane to Methanol Using Methylosinus trichosporium OB3b as Biocatalyst

  • Hwang, In Yeub;Hur, Dong Hoon;Lee, Jae Hoon;Park, Chang-Ho;Chang, In Seop;Lee, Jin Won;Lee, Eun Yeol
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권3호
    • /
    • pp.375-380
    • /
    • 2015
  • Recently, methane has attracted much attention as an alternative carbon feedstock since it is the major component of abundant shale and natural gas. In this work, we produced methanol from methane using whole cells of Methylosinus trichosporium OB3b as the biocatalyst. M. trichosporium OB3b was cultured on NMS medium with a supply of 7:3 air/methane ratio at 30℃. The optimal concentrations of various methanol dehydrogenase inhibitors such as potassium phosphate and EDTA were determined to be 100 and 0.5 mM, respectively, for an efficient production of methanol. Sodium formate (40 mM) as a reducing power source was added to enhance the conversion efficiency. A productivity of 49.0 mg/l·h, titer of 0.393 g methanol/l, and conversion of 73.8% (mol methanol/mol methane) were obtained under the optimized batch condition.

Pt dot 촉매전극을 활용하여 제작한 메탄올 센서 (Methanol Concentration Sensor by Using Pt dot Catalyst Electrode)

  • 양진석;박정호;박문호
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.505-506
    • /
    • 2008
  • The direct methanol fuel cell (DMFC) is a promising power source for portable applications due to many advantages such as simple construction, compact design, high energy density, and relatively high energy-conversion efficiency. In this work, an electrochemical methanol sensor for monitoring the methanol concentration in direct methanol fuel cells was fabricated using a thin composite nafion membrane as the electrolyte. We have analyzed the I-V characteristic of the fabricated methanol sensor as a function of methanol concentration, catalyst electrode and platinum(Pt) dot.

  • PDF

Effect of Sauropus Androgynus (Katuk) Extract on Egg Production and Lipid Metabolism in Layers

  • Santoso, U.;Setianto, J.;Suteky, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권3호
    • /
    • pp.364-369
    • /
    • 2005
  • The present study was conducted to evaluate effect of Sauropus androgynus extract (SAE) on egg production and lipid metabolism in layer chickens. Forty-eight layers aged 42 weeks (strain RIR) were distributed to 6 treatment groups as follows. One group was fed diet without SAE as the control ($P_0$), and other five groups were fed diet plus hot water-extracted SAE at level of 9 g/kg diet ($W_9$), diet plus ethanol extracted SAE at level of 0.9 g/kg diet ($E_{0.9}$), diet plus ethanol extracted SAE at level of 1.8 g/kg ($E_{1.8}$), diet plus methanol extracted SAE at level of 0.9 g/kg ($M_{0.9}$), and diet plus methanol extracted SAE at level of 1.8 g/kg ($M_{1.8}$). It was shown that SAE inclusion significantly increased egg production (p<0.05). Methanol-extracted SAE groups had lower egg production than ethanol-extracted SAE group (p<0.05). SAE supplemented groups had better feed conversion efficiency than the unsupplemented group (p<0.05). It was shown that ethanol extracted SAE resulted in the lowest feed conversion efficiency among the SAE supplemented groups (p<0.05). SAE supplementation significantly reduced abdominal fat, gizzard surrounded fat, liver fat (p<0.05), serum triglyceride, total cholesterol, VLDL+LDL-c (p<0.01), atherogenic index (p<0.05), egg cholesterol and triglyceride (p<0.05), but it had no effect on mesenteric fat, sartorial fat and fatty liver score. In conclusion, SAE supplementation could increase egg production but reduced egg cholesterol.

Preparation of a Water-Selective Ceramic Membrane on a Porous Stainless Steel Support by Sol-Gel Process and Its Application to Dehydration Membrane Reactor

  • Lee, Kew-Ho;Sea, Bongkuk;Youn, Min-Young;Lee, Yoon-Gyu;Lee, Dong-Wook
    • Korean Membrane Journal
    • /
    • 제6권1호
    • /
    • pp.10-15
    • /
    • 2004
  • We developed a water-selective ceramic composite membrane for use as a dehydration membrane reactor for dimethylether (DME) synthesis from methanol. The membranes were modified on the porous stainless steel support by the sol-gel method accompanied by a suction process. The improved membrane modification process was effective in increasing the vapour permselectivity by removal of defects and pinholes. The optimized alumina/silica composite membrane exhibited a water permeance of 1.14${\times}$10$^{-7}$ mol/$m^2$.sec.Pa and a water/methanol selectivity of 8.4 at permeation temperature of 25$0^{\circ}C$. The catalytic reaction for DME synthesis from methanol using the membrane was performed at 23$0^{\circ}C$, and the reaction conversion was compared with that of the conventional fixed-bed reactor. The reaction conversion of the membrane reactor was much higher than that of the conventional fixed-bed reactor. The reaction conversion of the membrane reactor and the conventional fixed-bed reactor was 82.5 and 68.0%, respectively. This improvement of reaction efficiency can last if the water vapour produced in the reaction zone is removed continuously.

수소 연료전지 추진 선박 적용을 위한 메탄올 수증기 개질 시스템 최적 운전점 연구 (A Study on Optimal Operation of Methanol Steam Reforming System for Hydrogen Fuel Cell Propulsion Ships)

  • 조희주;현수빈;정승교;지현진;최정호
    • 한국수소및신에너지학회논문집
    • /
    • 제33권6호
    • /
    • pp.733-742
    • /
    • 2022
  • Hydrogen fuel cell propulsion ships are emerging to respond to the recently strengthened carbon emission regulations in the international shipping sector. Methanol can be stored in a liquid state at normal pressure and temperature, and has the advantage of lower reforming temperature compared to other fuels. In this study, the optimal operating point of the methanol steam reforming system was derived by changing the Steam Carbon Ratio (SCR) from 0.10 to 3.00. Results showed that In terms of methanol conversion rate and hydrogen yield, the larger the SCR is the better, but in terms of system efficiency, it is most advantageous to operate at SCR 0.70 in Pressure Swing Adsorption (PSA) mode and SCR 0.80 in Pd membrane mode. Through this study, it was found that the optimal SCR in the reformer and the entire system including the reformer may be different, which indicates that the optimum operating point may be different depending on the change of the system configuration.