Browse > Article
http://dx.doi.org/10.7316/KHNES.2022.33.6.733

A Study on Optimal Operation of Methanol Steam Reforming System for Hydrogen Fuel Cell Propulsion Ships  

HEEJOO CHO (Daewoo Shipbuilding & Marine Engineering)
SOOBIN HYEON (Department of Naval Architecture and Offshore Engineering, Dong-A University)
SEUNGKYO JUNG (Daewoo Shipbuilding & Marine Engineering)
HYUNJIN JI (Agency for Defense Development)
JUNGHO CHOI (Department of Naval Architecture and Offshore Engineering, Dong-A University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.33, no.6, 2022 , pp. 733-742 More about this Journal
Abstract
Hydrogen fuel cell propulsion ships are emerging to respond to the recently strengthened carbon emission regulations in the international shipping sector. Methanol can be stored in a liquid state at normal pressure and temperature, and has the advantage of lower reforming temperature compared to other fuels. In this study, the optimal operating point of the methanol steam reforming system was derived by changing the Steam Carbon Ratio (SCR) from 0.10 to 3.00. Results showed that In terms of methanol conversion rate and hydrogen yield, the larger the SCR is the better, but in terms of system efficiency, it is most advantageous to operate at SCR 0.70 in Pressure Swing Adsorption (PSA) mode and SCR 0.80 in Pd membrane mode. Through this study, it was found that the optimal SCR in the reformer and the entire system including the reformer may be different, which indicates that the optimum operating point may be different depending on the change of the system configuration.
Keywords
Methanol; Steam reforming; Steam carbon ratio; Optimal operation; System efficiency;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 K. Faungnawakij, R. Kikuchi, and K. Eguchi, "Thermodynamic evaluation of methanol steam reforming for hydrogen production", Journal of Power Sources, Vol. 161, No. 1, 2006, pp. 87-94, doi: https://doi.org/10.1016/j.jpowsour.2006.04.091.   DOI
2 O. Ozcan and A. N. Akin, "Thermodynamic analysis of methanol steam reforming to produce hydrogen for HT-PEMFC: an optimization study", International Journal of Hydrogen Energy, Vol. 44, No. 27, 2019, pp. 14117-14126, doi: https://doi.org/10.1016/j.ijhydene.2018.12.211.   DOI
3 S. K. Jung, W. S. Cha, Y. I. Park, S. H. Kim, and J. Choi, "Conceptual design development of a fuel-reforming system for fuel cells in underwater vehicles", energies, Vol. 13, No. 8, 2020, pp. 2000, doi: https://doi.org/10.3390/en13082000.   DOI
4 H. Ji, E. Choi, and J. Lee, "Optimal operation condition of pressurized methanol fuel processor for underwater environment", Trans. of the Korean Hydrogen and New Energy Society, Vol. 27, No. 5, 2016, pp. 485493, doi: https://doi.org/10.7316/KHNES.2016.27.5.485.   DOI
5 Y. M. Lin and M. H. Rei, "Study on the hydrogen production from methanol steam reforming in supported palladium membrane reactor", Catalysis Today, Vol. 67, No. 13, 2001, pp. 7784, doi: https://doi.org/10.1016/S0920-5861(01)00267-X.   DOI
6 H. Ji, J. Lee, E. Choi, and I. Seo, "Hydrogen production from steam reforming using an indirect heating method", International Journal of Hydrogen Energy, Vol. 43, No. 7, 2018, pp. 3655-3663, doi: https://doi.org/10.1016/j.ijhydene.2017.12.137.   DOI
7 A. Perna, "Hydrogen from ethanol: theoretical optimization of a PEMFC system integrated with a steam reforming processor", International Journal of Hydrogen Energy, Vol. 32, No. 12, 2007, pp. 1811-1819, doi: https://doi.org/10.1016/j.ijhydene.2006.08.058.   DOI
8 H. Lee, I. Jung, G. Roh, Y. Na, and H. Kang, "Comparative analysis of onboard methane and methanol reforming systems combined with HT-PEM fuel cell and CO2 capture/liquefaction system for hydrogen fueled ship application", Energies, Vol. 13, No. 1, 2020, pp. 224, doi: https://doi.org/10.3390/en13010224.   DOI
9 T. H. Joung, S. G. Kang, J. K. Lee, and J. Ahn, "The IMO initial strategy for reducing greenhouse gas (GHG) emissions, and its follow-up actions towards 2050", Journal of International Maritime Safety, Environmental Affairs, and Shipping, Vol. 4, No. 1, 2020, pp. 17, doi: https://doi.org/10.1080/25725084.2019.1707938.   DOI
10 A. Chircop, "The IMO initial strategy for the reduction of GHGs from international shipping: a commentary", The International Journal of Marine and Coastal Law, Vol. 34, No. 3, 2019, pp. 482-512, doi: https://doi.org/10.1163/1571808513431093.   DOI
11 L. van Biert, M. Godjevac, K. Visser, and P. V. Aravind, "A review of fuel cell systems for maritime applications", Journal of Power Sources, Vol. 327, 2016, pp. 345-364, doi: https://doi.org/10.1016/j.jpowsour.2016.07.007.   DOI
12 G. Roh, H. Kim, H. Jeon, and K. Yoon, "Fuel consumption and CO2 emission reductions of ships powered by a fuelcellbased hybrid power source", Journal of Marine Science and Engineering, Vol. 7, No. 7, 2019, pp. 230, doi: https://doi.org/10.3390/jmse7070230.   DOI
13 E. Rivard, M. Trudeau, and K. Zaghib, "Hydrogen storage for mobility: a review", materials, Vol. 12, No. 12, 2019, pp. 1973, doi: https://doi.org/10.3390/ma12121973.   DOI
14 S. Sa, H. Silva, J. M. Sousa, and A. Mendes, "Hydrogen production by methanol steam reforming in a membrane re actor: palladium vs carbon molecular sieve membranes", Journal of Membrane Science, Vol. 339, No. 12, 2009, pp. 160-170, doi: https://doi.org/10.1016/j.memsci.2009.04.045.   DOI
15 M. S. Herdem, S. Farhad, and F. Hamdullahpur, "Modeling and parametric study of a methanol reformate gas-fueled HT-PEMFC system for portable power generation applications", Energy Conversion and Management, Vol. 101, 2015, pp. 19-29, doi: https://doi.org/10.1016/j.enconman.2015.05.004.   DOI
16 D. R. Palo, R. A. Dagle, and J. D. Holladay, "Methanol steam reforming for hydrogen production", Chemical Reviews, Vol. 107, No. 10, 2007, pp. 39924021, doi: https://doi.org/10.1021/cr050198b.   DOI
17 P. M. Ruya, S. S. Lim, R. Purwadi, and M. Zunita, "Sustainable hydrogen production from oil palm derived wastes through autothermal operation of supercritical water gasification system", Energy, Vol. 208, 2020, pp. 118280, doi: https://doi.org/10.1016/j.energy.2020.118280.   DOI
18 U. Cheon, K. Ahn, and H. Shin, "Study on the characteristics of methanol steam reformer using latent heat of steam", Trans. of Korean Hydrogen and New Energy Society, Vol. 29, No. 1, 2018, pp. 19-24, doi: https://doi.org/10.7316/KHNES.2018.29.1.19.   DOI
19 H. Ji, K. Baik, S. Yang, and S. Jung, "Startup strategy of multistage burner for methanol fuel reforming plant", Trans. of the Korean Hydrogen and New Energy Society, Vol. 30, No. 3, 2019, pp. 201-208, doi: https://doi.org/10.7316/KHNES.2019.30.3.201.   DOI
20 Xebec Adsorption Inc., "Pressure Swing Adsorption (PSA) Systems for Ultra-Pure Hydrogen & Other Industry Gas Purification", Xebec Adsorption Inc., 2021. Retrieved from https://xebecinc.com/wp-content/uploads/2021/06/Xebec-Hydrogen-Brochure.pdf.
21 L. Fiori, M. Valbusa, and D. Castello, "Supercritical water gasification of biomass for H2 production: Process design", Bioresource Technology, Vol. 121, 2012, pp. 139-147, doi: https://doi.org/10.1016/j.biortech.2012.06.116.   DOI
22 I. A. Fernandez, M. R. Gomez, J. R. Gomez, and L. M. Lopez-Gonzalez, "H2 production by the steam reforming of excess boil off gas on LNG vessels", Energy Conversion and Management, Vol. 134, 2017, pp. 301-313, doi: https://doi.org/10.1016/j.enconman.2016.12.047.   DOI
23 S. Martin and A. Worner, "Onboard reforming of bio diesel and bioethanol for high temperature PEM fuel cells: comparison of autothermal reforming and steam reforming", Journal of Power Sources, Vol. 196, No. 6, 2011, pp. 3163-3171, doi: https://doi.org/10.1016/j.jpowsour.2010.11.100.   DOI
24 Y. Lee, "Analysis of the characteristics of reformer for the application of hydrogen fuel cell systems to lng fueled ships", Journal of the Korean Society of Marine Environment and Safety, Vol. 27, No. 1, 2021, pp. 135-144, doi: https://doi.org/10.7837/kosomes.2021.27.1.135.   DOI