• 제목/요약/키워드: Methane-Air

검색결과 417건 처리시간 0.026초

A Numerical Study on Methane-Air Counterflow Diffusion Flames Part 1. Concentration of Fuel

  • Park, Woe-Chul
    • International Journal of Safety
    • /
    • 제2권1호
    • /
    • pp.7-11
    • /
    • 2003
  • Structure of the counterflow nonpremixed flames were investigated by using Fire Dynamics Simulator(FDS) and OPPDIF to evaluate FDS for simulations of the diffusion flame. FDS, employed a mixture fraction formulation, were applied to the diluted axisymmetric methane-air nonpremixed counterflow flames. Fuel concentration in the mixture of methane and nitrogen was considered as a numerical parameter in the range from 20% to 100% increasing by 10% by volume at the global strain rates of $a_g = 20S^{-l} and 80S^{-1}$ respectively. In all the computations, the gravity was set to zero since OPPDIF is not able to compute the buoyancy effects. It was shown by the axisymmetric simulation of the flames with FDS that increasing fuel concentration increases the flame thickness and decreases the flame radius. The centerline temperature and axial velocity, and the peek flame temperature showed good agreement between the both methods.

천연가스 연료의 연소특성에 관한 연구 (A Study on the Combustion Characteristics of Natural Gas Fuels)

  • 박명호;이선봉
    • 대한기계학회논문집B
    • /
    • 제23권10호
    • /
    • pp.1248-1253
    • /
    • 1999
  • This study is concerned about the combustion characteristics of methane-air and methane/hydrogen-air mainly the behavior of burning velocity including the effect of the ignition energy. The experiments were conducted in a spherical combustion bomb designed in this laboratory. The burning velocities were measured by the pressure-time history and the reaction rates were estimated theoretically. The experimental results showed that the burning velocity increased by 25 to 50 percent when hydrogen is added to methane by 20 percent.

메탄-공기 확산화염에서 수소 첨가 효과에 관한 연구 (A Study on Effects of Hydrogen Addition in Methane-Air Diffusion Flame)

  • 박준성;김정수;김성초;길상인;윤진한;김우현;박정
    • 대한기계학회논문집B
    • /
    • 제31권4호
    • /
    • pp.384-391
    • /
    • 2007
  • Hydrogen-blending effects in flame structure and NO emission behavior are numerically studied with detailed chemistry in methane-air counterflow diffusion flames. The composition of fuel is systematically changed from pure methane to the blending fuel of methane-hydrogen through $H_2$ molar addition up to 30%. Flame structure, which can be described representatively as a fuel consumption layer and a $H_2$-CO consumption layer, is shown to be changed considerably in hydrogen-blending methane flames, compared to pure methane flames. The differences are displayed through maximum flame temperature, the overlap of fuel and oxygen, and the behaviors of the production rates of major species. Hydrogen-blending into hydrocarbon fuel can be a promising technology to reduce both the CO and $CO_2$ emissions supposing that NOx emission should be reduced through some technologies in industrial burners. These drastic changes of flame structure affect NO emission behavior considerably. The changes of thermal NO and prompt NO are also provided according to hydrogen-blending. Importantly contributing reaction steps to prompt NO are addressed in pure methane and hydrogen-blending methane flames.

메탄/공기 예혼합화염에서 CARS를 이용한 CO 농도 및 온도측정과 수치해석 결과의 비교 (Comparison of CARS CO and Temperature Measurements with Numerical Calculation for Methane/Air Premixed Flames)

  • 강경태;정석호;박승남
    • 대한기계학회논문집
    • /
    • 제19권5호
    • /
    • pp.1333-1339
    • /
    • 1995
  • Recently developed technique of measuring minor species concentration by using the modulation dip in broadband CARS has been applied to the flame structure study of methane/air premixed flames in a counterflow. This method used the modulation dip from the cold band CO Q-branch resonant signal superimposed on the nonresonant background. The measured CO concentration profile in a symmetric and unsymmetric methane/air premixed flames together with the velocity and temperature by using LDV and CARS have been compared with the numerical results adopting detailed chemistry modeling. The results show that there is a satisfactory agreement between the experimental data and numerical results for velocities, temperatures and CO concentrations. And the modulation dip technique of measuring minor species, such as CO is a viable tool for a quantitative measurement in a flame.

메탄-수소-공기 예혼합기의 연소특성(II) (Combustion Characteristics of Methane-Hydrogen-Air Premixture(II))

  • 김봉석;이영재
    • 한국자동차공학회논문집
    • /
    • 제4권3호
    • /
    • pp.156-167
    • /
    • 1996
  • The present work is a continuation of our previous study to investigate the effects of parameters such as equivalence ratio, hydrogen supplement rate and initial pressure on combustion characteristics in a disk-shaped constant volume combustion chamber. The main results obtained from the study can be summarized as follows. The flames in near stoichiometric mixture of methane-air are propagated with a spherical shape, but in excess rich or lean mixtures are propagated with a elliptical shape. And, they are changed to an unstable elliptical shape flame with very regular cells by increasing the hydrogen supplement rate. Also, flame is sluggishly propagated at increased initial pressure in combustion chamber. Volume fraction of burned gas and flame radius as the combustion characteristics are increased by increasing the hydrogen supplement rate, especially at the combustion middle period, but then are slowly increased by increasing the initial pressure.

  • PDF

배기가스 내 산소 농도 기반 메탄-수소 연료 전환 제어 프로그램 개발 (Development of Control Program for Methane-hydrogen Fuel Conversion Based on Oxygen Concentration in Exhaust Gas)

  • 신은주;김영배
    • 한국수소및신에너지학회논문집
    • /
    • 제34권1호
    • /
    • pp.38-46
    • /
    • 2023
  • Carbon neutrality policies have been strengthened to reduce emissions, and the importance of technology road maps has been emphasized. In the global industrial boiler market, carbon neutrality is implemented through fuel diversification of methane-hydrogen mixture gas. However, various problems such as flashback and flame unstability arise. There is a limit to implementing the actual system as it remains in the early stage. Therefore, it is necessary to secure the source technology of methane-hydrogen hybrid combustion system applicable to industrial fields. In this study, control program for methane-hydrogen fuel conversion was developed to expect various parameters. After determining the hydrogen mixing ratio and the input air flow, the fuel conversion control algorithm was constructed to get the parameters that achieve the target oxygen concentration in the exhaust gas. LabVIEW program was used to derive correlations among hydrogen mixing rate, oxygen concentration in exhaust gas, input amount of air and heating value.

천연제올라이트를 이용한 메탄 하이드레이트 생성에 대한 연구 (A Study on the Methane Hydrate Formation Using Natural Zeolite)

  • 박성식;안웅진;김대진;전용한;김남진
    • 설비공학논문집
    • /
    • 제23권4호
    • /
    • pp.259-264
    • /
    • 2011
  • Gas hydrate is formed by physical binding between water molecule and gas such as methane, ethane, propane, or carbon dioxide, etc., which is captured in the cavities of water molecule under the specific temperature and pressure. $1\;m^3$ hydrate of pure methane can be decomposed to the methane gas of $172\;m^3$ and water of $0.8\;m^3$ at standard condition. If this characteristic of hydrate is reversely utilized, natural gas is fixed into water in the form of hydrate solid. Therefore, the hydrate is considered to be a great way to transport and store of natural gas in large quantity. Especially the transportation cost is known to be 18~25% less than the liquefied transportation. However, when methane gas hydrate is artificially formed, its reaction time may be too long and the gas consumption in water becomes relatively low, because the reaction rate between water and gas is low. Therefore, for the practical purpose in the application, the present investigation focuses on the rapid production of hydrates and the increment of the amount of captured gas by adding zeolite into pure water. The results show that when the zeolite of 0.01 wt% was added to distilled water, the amount of captured gas during the formation of methane hydrate was about 4.5 times higher than that in distilled water, and the methane hydrate formation time decreased at the same subcooling temperature.

천연가스 고체화 수송을 위한 메탄 하이드레이트 충진율 증대에 대한 실험적 연구 (Experimental Investigation on the Enhancement of Methane Hydrate Formation in the Solid Transportation of Natural Gas)

  • 김남진;정재성;김종보
    • 설비공학논문집
    • /
    • 제14권10호
    • /
    • pp.863-870
    • /
    • 2002
  • Fossil fuels have been depleted gradually and new energy resource which can solve this shortage is needed now. Methane hydrate, non-polluting new energy resource, satisfies this requirement and considered the precious resource prevent the global warming. Fortunately, there are abundant resources of methane hydrate distribute in the earth widely, so developing the techniques that can use these gases effectively is fully valuable. the work presented here is to develop the skill which can transport and store methane hydrate. As a first step, the equilibrium point experiment has been carried out by increasing temperatures in the cell at fixed pressures. The influence of gas consumption rates under variable degree of subcooling, stirring and water injection has been investigated formation to find out kinetic characteristics of the hydrate. The results of present investigation show that the enhancements of the hydrate formation in terms of the gas/water ratio are closely related to operational pressure, temperature, degrees of subcooling, stirring rate, and water injection.

천연가스 자동차용 삼원촉매의 $\lambda$-윈도우 영역 개선 (Improvement of $\lambda$--window Range of the Three-Way Catalyst for Natural Gas Vehicles)

  • 최병철;정필수
    • 한국자동차공학회논문집
    • /
    • 제8권1호
    • /
    • pp.92-100
    • /
    • 2000
  • The model gas reaction tests were carried out to investigate the purification characteristics of methane on the exclusive catalyst for NGV. The experiment was conducted with the factors which affect the conversion efficiency of methane, such as Redox ratio, coexistence components of CO, MO, $H_2$O, precious metals and additives. The catalyst loaded with larger amount of pd and with additive La showed lower light-off temperature. In the presence of CO and NO, the conversion efficiency of methane was varied according to the kind of additive loaded. The conversion efficiency of methane was dropped for the catalyst loaded with La under lean air-fuel ratio, while it increased for the one loaded with Ti+Zr for the same condition. It was shown that the water vapor inhibited methane from oxidation by its poisoning on the surface of catalyst.

  • PDF

저항회로의 개폐불꽃에 의한 폭발성 가스의 점화한계에 관한 연구 (A Study on The Ignition Limit of Flammable Gases by Discharge Spark of Resistive Circuit)

  • 이춘하
    • 한국가스학회지
    • /
    • 제1권1호
    • /
    • pp.106-112
    • /
    • 1997
  • 본 연구는 직류 저항회로의 개폐불꽃에 의한 폭발성 가스의 점화한계를 실험적으로 고찰하였다. 실험은 IEC형 불꽃점화 시험장치의 폭발용기에 폭발성 가스(메탄-공기 프로판-공기, 에틸렌-공기, 수소-공기)를 각각 넣고 텅스텐 전극과 카드뮴 전극사이에서 발생하는 3,200회의 개폐불꽃에 의한 점화유무를 확인하므로서 점화한계를 구하였다. 또한 실험장치의 점화감도교정을 실험한 후에 실시하므로서 실험의 정확성을 기하였다. 실험결과 최소 점화 전류값을 갖는 최소점화한계농도는 메탄-공기 8.3 [$Vol\%$], 프로판-공기 5.25[$Vol\%$], 에틸렌-공기 7.8[$Vol\%$], 수소-공기 21[$Vol\%$]로서 기존의 실험결과와 유사한 결과를 나타내었다. 또한 최소점화한계농도에서 전압과 최소점화잔류와의 관계를 구한 결과 최소점화한계는 메탄, 프로판, 에틸렌, 수소가스의 순서로 낮아졌고 점화전류의 크기는 전원전압의 크기와 반비례하고, 전극의 과열현상으로 인하여 전압 약 20(V)이하에서는 최소점화전류가 2(A)를 넘으면서 심화한계곡선이 급격히 상승한다는 것 등을 알 수 있었다.

  • PDF