• Title/Summary/Keyword: Methane reduction

Search Result 276, Processing Time 0.033 seconds

The Characteristics of Solar Thermochemical Methane Reforming using Ferrite-based Metal Oxides (페라이트계 금속산화물을 이용한 태양 열화학 메탄 개질 특성)

  • Cha, Kwang-Seo;Lee, Dong-Hee;Jo, Won-Jun;Lee, Young-Seok;Kim, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.45-48
    • /
    • 2007
  • Thermochemical 2-step methane reforming, involving the reduction of metal oxide with methane to produce syn-gas and the oxidation of the reduced metal oxide with water to produce pure hydrogen, was investigated on ferrite-based metal oxide mediums and $WO_{3}/ZrO_{2}$. Thermochemical 2-step methane reforming were accomplished at 900 $^{\circ}C$(syn-gas production step) and 800 $^{\circ}C$(water-splitting step). In syn-gas production step, it appeared carbon deposition on metal oxides with increasing react ion time. Various mediums showed the different starting point of carbon deposition each other. To minimize the carbon deposition, the reaction time was controlled before the starting point of carbon deposition. As a result, $CO_{x}$ were not evolved in water-splitting step, Among the various metal oxides, $Mn-ferrite/ZrO_{2}$ showed high reactivity, proper $H_{2}/CO$ ratio, high selectivity of undesired $CO_{2}$ and high evolution of $H_{2}$.

  • PDF

K and Cs Doped Ag/Al2O3 Catalyst for Selective Catalytic Reduction of NOx by Methane

  • Rao, Komateedi N.;Yu, Chang-Yong;Lack, Choi-Hee;Ha, Heon-Phil
    • Journal of Powder Materials
    • /
    • v.18 no.6
    • /
    • pp.510-516
    • /
    • 2011
  • In the present study, potassium and caesium doped Ag/$Al_2O_3$ catalysts were synthesized by simple wet impregnation method and evaluated for selective catalytic reduction (SCR) of NOx using methane. TEM analysis and diffraction patterns demonstrated the finely dispersed Ag particles. BET surface measurements reveal that the prepared materials have moderate to high surface area and the metal amount found from ICP analysis was well matching with the theoretical loadings. The synthesized K-Ag/$Al_2O_3$ and Cs-Ag/$Al_2O_3$ catalysts exhibited a promotional effect on deNOx activity in the presence of $SO_2$ and $H_2O$. The long-term isothermal studies at $550^{\circ}C$ under oxygen rich condition showed the superior catalytic properties of the both alkali promoted samples. The crucial catalytic properties of materials are attributed to NO adsorption properties detected by the NO TPD.

Copper ion Toxicity Causes Discrepancy between Acetate Degradation and Methane Production in Granular Sludge

  • Bae, Jin-Woo;Rhee, Sung-Keun;Jang, Am;Kim, In-S.;Lee, Sung-Taik
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.5
    • /
    • pp.849-853
    • /
    • 2002
  • Metal ions have an adverse effect on anaerobic digestion. In an acetate degradation test of upflow of anaerobic sludge blanket granules with $Cu^{2+}$, not all of the acetate that disappeared was stoichiometrically converted to methane. In the presence of 400 mg/g-VSS (volatile suspended solids) $Cu^{2+}$, only 26% of the acetate consumed was converted to methane. To study acetate conversion by other anaerobic microorganisms, sulfate and nitrate reductions were investigated in the presence of $Cu^{2+}$ Sulfate and nitrate reductions exhibited more resistance to $Cu^{2+}$than methanogenesis, and the granules reduced 2.2 mM and 5.4 mM of nitrate and sulfate, respectively, in the presence of 400 mg/g-VSS copper ion. However, the acetate degraded by sulfate and nitrate reductions was only 24% of the missing acetate that could have been stoichiometrically converted to $CO_2$. Accordingly, 76% of the acetate consumed appeared to have been converted to other unknown compounds.

Microbial Community Composition Associated with Anaerobic Oxidation of Methane in Gas Hydrate-Bearing Sediments in the Ulleung Basin, East Sea (동해 울릉분지 가스 하이드레이트 매장 지역의 메탄산화 미생물 군집 조성 및 분포)

  • Cho, Hyeyoun;Kim, Sung-Han;Shin, Kyung-Hoon;Bahk, Jang-Jun;Hyun, Jung-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.1
    • /
    • pp.53-62
    • /
    • 2015
  • To elucidate the microbial consortia responsible for the anaerobic methane oxidation in the methane hydrate bearing sediments, we compared the geochemical constituents of the sediment, the rate of sulfate reduction, and microbial biomass and diversity using an analysis of functional genes associated with the anaerobic methane oxidation and sulfate reduction between chimney site (UBGH2-3) on the continental slope and non-chimney site (UBGH2-10) on the basin of the Ulleung Basin. From the vertical profiles of geochemical constituents, sulfate and methane transition zone (SMTZ) was clearly defined between 0.5 and 1.5 mbsf (meters below seafloor) in the UBGH2-3, and between 6 and 7 mbsf at the UBGH2-10. At the UBGH2-3, the sulfate reduction rate (SRR) in the SMTZ exhibited was appeared to be $1.82nmol\;cm^{-3}d^{-1}$ at the depth of 1.15 mbsf. The SRR in the UBHG2-10 showed a highest value ($4.29nmol\;cm^{-3}d^{-1}$) at the SMTZ. The 16S rRNA gene copy numbers of total Prokaryotes, mcrA, (methyl coenzyme M reductase subunit A), and dsrA (dissimilatory sulfite reductase subunit A) showed the peaks in the SMTZ at both sites, but the maximum mcrA gene copy number of the UBGH2-10 appeared below the SMTZ (9.8 mbsf). ANME-1 was a predominant ANME (Anaerobic MEthanotroph) group in both SMTZs of the UBGH2-3 and -10. However, The sequences of ANME-2 were detected only at 2.2 mbsf of the UBGH2-3 where high methane flux was observed because of massive amount of gas hydrate at shallow depth. And Desulfosarcina-Desulfococcus (DSS) that is associated with ANME-2 was detected in 2.2 mbsf of the UBHG2-3. Overall results demonstrate that ANME-1 and ANME-2 are considered as significant archaeal groups related to methane cycle in the subsurface sediment of the East Sea, and ANME-2/DSS consortia might be more responsible for methane oxidation in the methane seeping region than in non-seeping region.

Effect of Promoter with Ru and Pd on Hydrogen Production over Ni/CeO2-ZrO2 Catalyst in Steam Reforming of Methane (메탄의 수증기 개질 반응에서 Ni/CeO2-ZrO2 촉매의 수소 생산에 대한 Ru 및 Pd의 조촉매 효과)

  • In Ho Seong;Kyung Tae Cho;Jong Dae Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.2
    • /
    • pp.134-139
    • /
    • 2024
  • In the steam reforming of methane reactions, the effect of adding noble metals Ru and Pd to a Ni-based catalyst as promoters was analyzed in terms of catalytic activity and hydrogen production. The synthesized catalysts were coated on the surface of a honeycomb-structured metal monolith to perform steam methane reforming reactions. The catalysts were characterized by XRD, TPR, and SEM, and after the reforming reaction, the gas composition was analyzed by GC to measure methane conversion, hydrogen yield, and CO selectivity. The addition of 0.5 wt% Ru improved the reduction properties of the Ni catalyst and exhibited enhanced catalytic activity with a methane conversion of 99.91%. In addition, reaction characteristics were analyzed according to various process conditions. Methane conversion of over 90% and hydrogen yield of more than 3.3 were achieved at a reaction temperature of 800 ℃, a gas hourly space velocity (GHSV) of less than 10000 h-1, and a ratio of H2O to CH4 (S/C) higher than 3.

Combustion Characteristics for Varying Flow Velocity on Methane/Oxygen Diffusion Flames (메탄 산소 확산화염에서 유속 변화에 따른 연소특성)

  • Kim, Ho-Keun;Lee, Sang-Min;Ahn, Kook-Young;Kim, Yong-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.11 s.242
    • /
    • pp.1277-1284
    • /
    • 2005
  • The combustion characteristics of methane oxygen diffusion flames have been investigated to give basic information for designing industrial oxyfuel combustors. NOx reduction has become one of the most determining factors in the combustor design since the small amount of nitrogen is included from the current low cost oxygen production process. Flame lengths decreased with increasing fuel or oxygen velocity because of the enhancement of mixing effect. Correlation equation between flame length and turbulent kinetic energy was proposed. NOx concentration was reduced with increasing fuel or oxygen velocity because of the enhanced entrainment of the product gas into flame zone as well as the reduction of residence time in combustion zone.

Anaerobic Co-digestion of Dairy Manure and Crude Glycerin (젖소분뇨와 Crude Glycerin의 통합혐기소화)

  • Lee, Sae-Min;Lee, Sang-Rak
    • Journal of Animal Environmental Science
    • /
    • v.19 no.2
    • /
    • pp.191-196
    • /
    • 2013
  • In this study, the mixture ratio included 20% (GLY 20), 40% (GLY 40), and 60% (GLY 60) based on VS with the control group (GLY 0) with no crude glycerin added. Maintaining stable pH, GLY 20 and GLY 0 showed the highest total output of biogas (1.24 L/L/d) and methane(0.78 L/L/d) as its volatile solids reduction rate was 53.56%. In case of GLY 40 and GLY 60, their pH was rapidly reduced after seven days of the study, so that their anaerobic digestion was all stopped.In the results of the study, it is desirable to add crude glycerin less than 20%, and it would be necessary to have the future researches on more detailed organic loading rate of each ratio, and analysis on economic feasibility.

Technology Trends of Fuel Cell Power Plant Based on Biogas Fuel (바이오가스 연료기반 연료전지발전 기술동향)

  • Lee, Jong-Gyu;Jeon, Jae-Ho;Lee, Jong-Yeon
    • New & Renewable Energy
    • /
    • v.4 no.3
    • /
    • pp.5-14
    • /
    • 2008
  • The target for the reduction of $CO_2$ emissions, as specified in the Kyoto Protocol, can only be achieved by an extended use of renewable fuels and the increasing of the energy efficiency. The energy generation from waste gases with a reasonable content of methane like biogas can significantly contribute to reach this target. A further reduction of greenhouse gas emissions is possible by increasing the electrical efficiency using progressive technologies. Fuel cells can be highly energy conversion devices. Utilizing biogas as the fuel for fuel cell systems offers an option that is technically feasible, potentially economically attractive and greenhouse gas neutral. High temperature fuel cells that are able to operate with carbon monoxide in the feed are well suited to these applications. Furthermore, because they do not require noble metal catalysts, the cost of high-temperature fuel cells has the greatest potential to become competitive in the near future compared to other types of fuel cells.

  • PDF

Effect of Sodium Nitrate and Nitrate Reducing Bacteria on In vitro Methane Production and Fermentation with Buffalo Rumen Liquor

  • Sakthivel, Pillanatham Civalingam;Kamra, Devki Nandan;Agarwal, Neeta;Chaudhary, Chandra
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.6
    • /
    • pp.812-817
    • /
    • 2012
  • Nitrate can serve as a terminal electron acceptor in place of carbon dioxide and inhibit methane emission in the rumen and nitrate reducing bacteria might help enhance the reduction of nitrate/nitrite, which depends on the type of feed offered to animals. In this study the effects of three levels of sodium nitrate (0, 5, 10 mM) on fermentation of three diets varying in their wheat straw to concentrate ratio (700:300, low concentrate, LC; 500:500, medium concentrate, MC and 300:700, high concentrate, HC diet) were investigated in vitro using buffalo rumen liquor as inoculum. Nitrate reducing bacteria, isolated from the rumen of buffalo were tested as a probiotic to study if it could help in enhancing methane inhibition in vitro. Inclusion of sodium nitrate at 5 or 10 mM reduced (p<0.01) methane production (9.56, 7.93 vs. 21.76 ml/g DM; 12.20, 10.42 vs. 25.76 ml/g DM; 15.49, 12.33 vs. 26.86 ml/g DM) in LC, MC and HC diets, respectively. Inclusion of nitrate at both 5 and 10 mM also reduced (p<0.01) gas production in all the diets, but in vitro true digestibility (IVTD) of feed reduced (p<0.05) only in LC and MC diets. In the medium at 10 mM sodium nitrate level, there was 0.76 to 1.18 mM of residual nitrate and nitrite (p<0.01) also accumulated. In an attempt to eliminate residual nitrate and nitrite in the medium, the nitrate reducing bacteria were isolated from buffalo adapted to nitrate feeding and introduced individually (3 ml containing 1.2 to $2.3{\times}10^6$ cfu/ml) into in vitro incubations containing the MC diet with 10 mM sodium nitrate. Addition of live culture of NRBB 57 resulted in complete removal of nitrate and nitrite from the medium with a further reduction in methane and no effect on IVTD compared to the control treatments containing nitrate with autoclaved cultures or nitrate without any culture. The data revealed that nitrate reducing bacteria can be used as probiotic to prevent the accumulation of nitrite when sodium nitrate is used to reduce in vitro methane emissions.

Reductive acetogens isolated from ruminants and their effect on in vitro methane mitigation and milk performance in Holstein cows

  • Kim, Seon-Ho;Mamuad, Lovelia L;Islam, Mahfuzul;Lee, Sang-Suk
    • Journal of Animal Science and Technology
    • /
    • v.62 no.1
    • /
    • pp.1-13
    • /
    • 2020
  • This study was designed to evaluate the in vitro and in vivo effects of reductive acetogens isolated from ruminants on methane mitigation, and milk performance, respectively. Four acetogens, Proteiniphilum acetatigenes DA02, P. acetatigenes GA01, Alkaliphilus crotonatoxidans GA02, and P. acetatigenes GA03 strains were isolated from ruminants and used in in vitro experiment. A control (without acetogen) and a positive group (with Eubacterium limosum ATCC 8486) were also included in in vitro experiment. Based on higher acetate as well as lower methane producing ability in in vitro trial, P. acetatigenes GA03 was used as inoculum for in vivo experiment. Holstein dairy cows (n = 14) were divided into two groups viz. control (without) and GA03 group (diet supplied with P. acetatigenes GA03 at a feed rate of 1% supplementation). Milk performance and blood parameters were checked for both groups. In in vitro, the total volatile fatty acids and acetate production were higher (p < 0.05) in all 4 isolated acetogens than the control and positive treatment. Also, all acetogens significantly lowered (p < 0.05) methane production in comparison to positive and control groups however, GA03 had the lowest (p < 0.05) methane production among 4 isolates. In in vivo, the rate of milk yield reduction was higher (p < 0.05) in the control than GA03 treated group (5.07 vs 2.4 kg). Similarly, the decrease in milk fat was also higher in control (0.14% vs 0.09%) than treatment. The somatic cell counts (SCC; ×103/mL) was decreased from 128.43 to 107.00 in acetogen treated group however, increased in control from 138.14 to 395.71. In addition, GA03 increased blood glucose and decreased non-esterified fatty acids. Our results suggest that the isolated acetogens have the potential for in vitro methane reduction and P. acetatigenes GA03 strain could be a candidate probiotic strain for improving milk yield and milk fat in lactating cows with lowering SCCs.