• Title/Summary/Keyword: Methane fermentation

Search Result 251, Processing Time 0.027 seconds

Dietary manipulation: a sustainable way to mitigate methane emissions from ruminants

  • Haque, Md Najmul
    • Journal of Animal Science and Technology
    • /
    • v.60 no.6
    • /
    • pp.15.1-15.10
    • /
    • 2018
  • Methane emission from the enteric fermentation of ruminant livestock is a main source of greenhouse gas (GHG) emission and a major concern for global warming. Methane emission is also associated with dietary energy lose; hence, reduce feed efficiency. Due to the negative environmental impacts, methane mitigation has come forward in last few decades. To date numerous efforts were made in order to reduce methane emission from ruminants. No table mitigation approaches are rumen manipulation, alteration of rumen fermentation, modification of rumen microbial biodiversity by different means and rarely by animal manipulations. However, a comprehensive exploration for a sustainable methane mitigation approach is still lacking. Dietary modification is directly linked to changes in the rumen fermentation pattern and types of end products. Studies showed that changing fermentation pattern is one of the most effective ways of methane abatement. Desirable dietary changes provide two fold benefits i.e. improve production and reduce GHG emissions. Therefore, the aim of this review is to discuss biology of methane emission from ruminants and its mitigation through dietary manipulation.

Control of Rumen Microbial Fermentation for Mitigating Methane Emissions from the Rumen

  • Mitsumori, Makoto;Sun, Weibin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.1
    • /
    • pp.144-154
    • /
    • 2008
  • The rumen microbial ecosystem produces methane as a result of anaerobic fermentation. Methanogenesis in the rumen is thought to represent a 2-12% loss of energy intake and is estimated to be about 15% of total atmospheric methane emissions. While methanogenesis in the rumen is conducted by methanogens, PCR-based techniques have recently detected many uncultured methanogens which have a broader phylogenetic range than cultured strains isolated from the rumen. Strategies for reduction of methane emissions from the rumen have been proposed. These include 1) control of components in feed, 2) application of feed additives and 3) biological control of rumen fermentation. In any case, although it could be possible that repression of hydrogen-producing reactions leads to abatement of methane production, repression of hydrogen-producing reactions means repression of the activity of rumen fermentation and leads to restrained digestibility of carbohydrates and suppression of microbial growth. Thus, in order to reduce the flow of hydrogen into methane production, hydrogen should be diverted into propionate production via lactate or fumarate.

Effects of Rumen Protozoa of Brahman Heifers and Nitrate on Fermentation and In vitro Methane Production

  • Nguyen, S.H.;Li, L.;Hegarty, R.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.6
    • /
    • pp.807-813
    • /
    • 2016
  • Two experiments were conducted assessing the effects of presence or absence of rumen protozoa and dietary nitrate addition on rumen fermentation characteristics and in vitro methane production in Brahman heifers. The first experiment assessed changes in rumen fermentation pattern and in vitro methane production post-refaunation and the second experiment investigated whether addition of nitrate to the incubation would give rise to methane mitigation additional to that contributed by defaunation. Ten Brahman heifers were progressively adapted to a diet containing 4.5% coconut oil distillate for 18 d and then all heifers were defaunated using sodium 1-(2-sulfonatooxyethoxy) dodecane (Empicol). After 15 d, the heifers were given a second dose of Empicol. Fifteen days after the second dosing, all heifers were allocated to defaunated or refaunated groups by stratified randomisation, and the experiment commenced (d 0). On d 0, an oral dose of rumen fluid collected from unrelated faunated cattle was used to inoculate 5 heifers and form a refaunated group so that the effects of re-establishment of protozoa on fermentation characteristics could be investigated. Samples of rumen fluid collected from each animal using oesophageal intubation before feeding on d 0, 7, 14, and 21 were incubated for in vitro methane production. On d 35, 2% nitrate (as $NaNO_3$) was included in in vitro incubations to test for additivity of nitrate and absence of protozoa effects on fermentation and methane production. It was concluded that increasing protozoal numbers were associated with increased methane production in refaunated heifers 7, 14, and 21 d after refaunation. Methane production rate was significantly higher from refaunated heifers than from defaunated heifers 35 d after refaunation. Concentration and proportions of major volatile fatty acids, however, were not affected by protozoal treatments. There is scope for further reducing methane output through combining defaunation and dietary nitrate as the addition of nitrate in the defaunated heifers resulted in 86% reduction in methane production in vitro.

Abatement of Methane Production from Ruminants: Trends in the Manipulation of Rumen Fermentation

  • Kobayashi, Yasuo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.3
    • /
    • pp.410-416
    • /
    • 2010
  • Methane emitted from ruminant livestock is regarded as a loss of feed energy and also a contributor to global warming. Methane is synthesized in the rumen as one of the hydrogen sink products that are unavoidable for efficient succession of anaerobic microbial fermentation. Various attempts have been made to reduce methane emission, mainly through rumen microbial manipulation, by the use of agents including chemicals, antibiotics and natural products such as oils, fatty acids and plant extracts. A newer approach is the development of vaccines against methanogenic bacteria. While ionophore antibiotics have been widely used due to their efficacy and affordable prices, the use of alternative natural materials is becoming more attractive due to health concerns regarding antibiotics. An important feature of a natural material that constitutes a possible alternative methane inhibitor is that the material does not reduce feed intake or digestibility but does enhance propionate that is the major hydrogen sink alternative to methane. Some implications of these approaches, as well as an introduction to antibiotic-alternative natural materials and novel approaches, are provided.

A study on Enhanced Efficiencies of Methane Fermented Alcohol Wastewater Treatment by Supplement of Nutrients (영양물질 주입에 의한 메탄 발효 주정폐액의 효율증진에 관한 연구)

  • 안승구;이인학;진서형
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.3
    • /
    • pp.40-49
    • /
    • 1997
  • In Korea, naked barley and tapioca are main raw materials for the production of fermentation ethyl alcohol, and one million drums bf 95% fermentation ethyl alcohol is produced per year by use of them. Stillage of alcoholic fermentation is mostly digested by methane fermentation process, and methane gas occured if methane fermentation process is recovered and mixed with fuel to decrease 25-30% for total fuel used in factories. In the anaerobic digestion process of naked barley stillage, supplement of nutrients is necessary to slove the problems caused by inhibitory materials contained if stillage and deficiency of nutrients. Therefore, the objective of this study was to examine why the anaerobic digesters using the naked barley distillery wastewater have shown the poor digestability frequently and how to control it. As the poor digestion was supposed to be occurred by the lack of iron as trace nutrient, the experiments were carried out to find out the optimum dosage and the way of addition of iron and to assess the quantitative evaluation of the type of iron in digesters. Initially, bottle test as batch digesters and lab-scaled continuous flow digesters were used in order to determine the digestion characteristics with tapioca and naked barley distillery wastewater. According to the results of batch tests, the poor digestion was caused by volatile fatty acids and could be improved by adding of calcium. The activity of the methanogenic bacteria were increased remarkably when the iron was added to the digester in the form of mixture with substrates.

  • PDF

The role of rumen microbiota in enteric methane mitigation for sustainable ruminant production

  • Takumi Shinkai;Shuhei Takizawa;Miho Fujimori;Makoto Mitsumori
    • Animal Bioscience
    • /
    • v.37 no.2_spc
    • /
    • pp.360-369
    • /
    • 2024
  • Ruminal methane production functions as the main sink for metabolic hydrogen generated through rumen fermentation and is recognized as a considerable source of greenhouse gas emissions. Methane production is a complex trait affected by dry matter intake, feed composition, rumen microbiota and their fermentation, lactation stage, host genetics, and environmental factors. Various mitigation approaches have been proposed. Because individual ruminants exhibit different methane conversion efficiencies, the microbial characteristics of low-methane-emitting animals can be essential for successful rumen manipulation and environment-friendly methane mitigation. Several bacterial species, including Sharpea, uncharacterized Succinivibrionaceae, and certain Prevotella phylotypes have been listed as key players in low-methane-emitting sheep and cows. The functional characteristics of the unclassified bacteria remain unclear, as they are yet to be cultured. Here, we review ruminal methane production and mitigation strategies, focusing on rumen fermentation and the functional role of rumen microbiota, and describe the phylogenetic and physiological characteristics of a novel Prevotella species recently isolated from low methane-emitting and high propionate-producing cows. This review may help to provide a better understanding of the ruminal digestion process and rumen function to identify holistic and environmentally friendly methane mitigation approaches for sustainable ruminant production.

Anaerobic Fermentation of Woody Biomass Treated by Various Methods

  • Nakamura, Yoshitoshi;Mtui, Godliving
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.3
    • /
    • pp.179-182
    • /
    • 2003
  • Anaerobic fermentation was attempted to produce methane from the wood chip (Eucalyptus globulus). By the pretreatment of the wood chip using hot water with high temperature, NaOH, and steam explosion, the production of methane gas was enhanced. The pretreatment using Steam explosion resulted in more amount of methane gas produced than the treatment using either hot water or 1% (w/w) NaOH with high temperature, and the steam explosion at a steam pressure of 25 atm and a steaming time of 3 min was the most effective for the methane production. The amount of methane gas produced depended on the ratio of weight of Klason lignin, a high molecular weight lignin, in the treated wood chip.

The Effect of 2-Step Control of Anaerobic Fermentation for Maximum Methane Production of Swine Wastes (돈분을 이용한 혐기발효시 최대의 메탄생성을 위한 2단계 제어의 효과)

  • 김범석;이상락;맹원재
    • Journal of Animal Environmental Science
    • /
    • v.4 no.2
    • /
    • pp.175-182
    • /
    • 1998
  • For the recycling of swine takes 2 different steps in fermenting procedure, acidogenic reactor and methanogenic reactor, the activity of involved microbes can be maintained at the maximum level. This study showed applying 2 separate steps in anaerobic fermentation has improved fermenting efficiency over the conventional 1 step fermentation. Accordingly, the results are coincident with the hypothesis in which 2 steps acidogenic and methanogenic reactor fermentation is more efficient than conventional (1 step) fermentation that makes poisonous materials be obviate and abate. And the results also get the effective performance in the production of methane gas.

  • PDF

Effect of feeding garlic leaves on rumen fermentation, methane emission, plasma glucose kinetics, and nitrogen utilization in sheep

  • Panthee, Arvinda;Matsuno, Ayana;Al-Mamun, Mohammad;Sano, Hiroaki
    • Journal of Animal Science and Technology
    • /
    • v.59 no.6
    • /
    • pp.14.1-14.9
    • /
    • 2017
  • Background: Garlic and its constituents are reported to have been effective in reducing methane emission and also influence glucose metabolism in body; however, studies in ruminants using garlic leaves are scarce. Garlic leaves contain similar compounds as garlic bulbs, but are discarded in field after garlic bulb harvest. We speculate that feeding garlic leaves might show similar effect as garlic constituents in sheep and could be potential animal feed supplement. Thus, we examined the effect of freeze dried garlic leaves (FDGL) on rumen fermentation, methane emission, plasma glucose kinetics and nitrogen utilization in sheep. Methods: Six sheep were fed Control diet (mixed hay and concentrate (60:40)) or FDGL diet (Control diet supplemented with FDGL at 2.5 g/kg $BW^{0.75}$ of sheep) using a crossover design. Methane gas emission was measured using open-circuit respiratory chamber. Plasma glucose turnover rate was measured using isotope dilution technique of [$U-^{13}C$]glucose. Rumen fluid, feces and urine were collected to measure rumen fermentation characteristics and nitrogen utilization. Result: No significant difference in rumen fermentation parameters was noticed except for rumen ammonia tended to be higher (0.05 < P < 0.1) in FDGL diet. Methane emission per kg dry matter ingested and methane emission per kg dry matter digested were lower (P < 0.05) in FDGL diet. Plasma glucose concentration was similar between diets and plasma glucose turnover rate tended to be higher in FDGL diet (0.05 < P < 0.1). Nitrogen retention was higher (P < 0.05) and microbial nitrogen supply tended to be higher (0.05 < P < 0.1) in FDGL diet. Conclusion: FDGL diet did not impair rumen fermentation, improved nitrogen retention; while absence of significant results in reduction of methane emission, glucose turnover rate and microbial nitrogen supply, further studies at higher dose would be necessary to conclude the merit of FDGL as supplement in ruminant feedstuff.

Methane Fermentation of the Paper Mill Sludge under Anaerobic Condition (제지슬러지의 혐기메탄발효)

  • Choi, Jong-Woo;Lee, Kyu-Seung
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.1
    • /
    • pp.22-27
    • /
    • 2004
  • The activated paper mill sludge was treated with WF and some additives (sodium sulfide, nickel nitrate, ethyl acetate) for methane fermentation at $35^{\circ}C$. Optmum C/N ratio was 60 out of three conditions (20, 30 and 60). The Period of 40% of methane content possibly ignition, was 2 days shorter than with non-treatment during 10 days. Nevertheless, the total amount of methane production showed the 1/8 level of control far the same period. The yield and content of methane were increased by the addition of sodium Sulfur and ethyl acetate. Sulfur was an essential factor in methane fermentation of paper mill sludge.