• Title/Summary/Keyword: Methane amount

Search Result 303, Processing Time 0.029 seconds

Gas Explosion Hazard Analysis in Domestic (가정집에서 가스폭발 위험성 분석)

  • Jo Young-Do;Kim Ji-Yun;Kim Sang-sub
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.2 s.14
    • /
    • pp.36-42
    • /
    • 2001
  • A leak of fuel gas in partially confined area creates a flammable atmosphere and give rise to an explosion, which is one of the most common accident in domestic. Observations from accident in domestic suggest that some explosions are caused by a quantify of fuel significantly less than lower explosion limit(LEL) amount required to fill the room, which is attributed to inhomogeneous mixing of leaked gas. The minimum amount of leaked gas for explosion is highly dependent on the mixing degree in the area. For lighter gas, such as methane, a high concentration tends to build up in the space from ceiling of room. But heavy gas, such as propane, a high concentration tends to build up in the space from bottom of room. This paper presents a method for analysing the explosion hazard in a room with very small amount of leaked gas. Based on explosion limit concentration, the gaussian distribution model is used to estimate the minimum amount of leak which yields a specified explosion pressure. The results demonstrate that catastrophic structural damage can be achieved with a volume of fuel gas which is less than 0.5 percent of the total enclosed volume in domestic. The method will help analyzing hazard to develop new safe device as well as investigating accident.

  • PDF

Estimation of Landfill Gas Utilization in Old Landfill (사용 종료 매립지의 가스 활용 방안 평가)

  • Lee, Cheol-hyo;Jeon, Yeon-ho;Lee, Chae-young;Kim, Kyung;Lee, Hwan;Lee, Nam-hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.2
    • /
    • pp.154-160
    • /
    • 2000
  • Landfill gas (LFG) utilization in old landfill was estimated using LFG models. The results showed that Scholl Canyon model best described the LFG generation. LFG was extracted more than the amount of natural production which caused air inflow from outside that resulted in dilution of methane concentration and increase of oxygen concentration. It was negative for the LFG utilization. Therefore, to use LFG, the plan of stabilization by LFG extraction should be ineffective. The use of LFG will have no problem if LFG is extracted less than the amount of natural production which was estimated based on modeling. At 8 years elapsed from landfill, now, the amount of natural landfill gas production was decreased sharply. The plan for using LFG from old landfill is feasible if LFG is used for the less than the amount of natural production as a small scale even though for the aspect of efficiency, it was less economic than use of LFG just after closing landfilling and it was helpful for stabilization of landfill by LFG extraction.

  • PDF

Biological conversion of CO2 to CH4 in anaerobic fixed bed reactor under continuous operation (혐기성 고정층 생물반응기의 연속운전을 통한 이산화탄소의 메탄전환)

  • Kim, Jaehyung;Koo, Hyemin;Chang, Wonseok;Pak, Daewon
    • Journal of Energy Engineering
    • /
    • v.22 no.4
    • /
    • pp.347-354
    • /
    • 2013
  • This study was carried out to examine different mole ratio of $H_2/CO_2$ and EBCT using the continuous system in the lab scale throughout biological methods with accumulated hydrogenotrophic methanogen that can convert $CO_2$ to $CH_4$. The experimental-based results with various gas mixtures of mole ratio of 4:1($H_2/CO_2$) and 5:1($H_2/CO_2$), $H_2$ was converted more than 99% conversion rate. In case of $CO_2$, 4:1($H_2/CO_2$) and 5:1($H_2/CO_2$) were $74.45{\pm}0.33%$, $95.8{\pm}10.7%$, respectively, in addition, the study was confirmed that the amount of $H_2$ was more needed than stoichiometric equations, where approach methods are empirical versus theoretical frameworks, for converting total $CO_2$. As such, we have noticed that $H_2$ was used for energy source of hydrogenotrophic methanogen for maintaining life. Regarding the results of the ratio of treatment by retention time, limitation of treatment capacity showed that $H_2$(99.9%) and $CO_2$(96.23%) at EBCT 3.3 hrs indicated stable conversion ratio, as well as appeared that methane production rate and $CO_2$ fixation rate were investigated $1.15{\pm}0.02m^3{\cdot}m^{-3}{\cdot}day^{-1}$ and $2.01{\pm}0.04kg{\cdot}m^{-3}{\cdot}day^{-1}$, respectively.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Biogas Utilization of Power generation and Stream - Design and Operation Guideline (바이오가스 이용 기술지침 마련을 위한 연구(III) - 기술지침(안) 중심으로)

  • Moon, HeeSung;Bae, Jisu;Pack, Hoyeun;Jeon, Taewan;Lee, Younggi;Lee, Dongjin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.2
    • /
    • pp.95-103
    • /
    • 2018
  • As a guideline for desulfurization and dehumidification pretreatment facility for optimizing utilization of biogas, the $H_2S$ concentration is set at 150 % which can be treated with iron salts, dehumidification is the optimum value for generator operation, and the relative humidity applied at the utilization of biogas in EU is set at 60 %. We have set up the generator facility guidelines to optimize utilization of biogas. The appropriate amount of biogas should be at least 90 % of the total gas generation, and the capacity of generator facility should be set at 20~30 %. In order to equalize the pressure of the incoming gas the generator, a gas equalization tank should be installed and the generator room average temperature should be kept at $45^{\circ}C$ or less. Since the gas is not produced at a certain methane concentration in the digester, the efficiency is lowered. Therefore, it is required to install an air fuel ratio control system according to the change in methane concentration. Therefore, it is necessary to compensate for the disadvantages of biogasification facilities of organic waste resources and optimize utilization of biogas and improve operation of facilities. This study was conducted to optimize biogas utilization of type of organic waste(containing sewage sludge and food waste, animal manure), investigate the facilities problem and propose design, operation guidelines such as pre-treatment facilities and generators.

Relationship among Physical & Chemical Properties of Supports and Performance of Methane Fermentation in Anaerobic Fluidized-Bed Reactor (혐기성 유동층 반응기에서 지지체의 물리.화학적 특성과 메탄 발효 성능 사이의 관계)

  • 조무환;남영섭정재학김정목
    • KSBB Journal
    • /
    • v.8 no.5
    • /
    • pp.431-437
    • /
    • 1993
  • Active carbon which has the smallest bulk and wet density was found as the best support media among 4 different kinds of materials(celite, natural zeolite, Pusuk stone, active carbon) to make a proper fluidized-bed with small energy consumption. Its minimum and optimum fluidization velocity were found as 0.03cm/sec and 0.25cm/sec, respectively. As organic loading rate for methane fermentation was increased, CODcr removal efficiencies of all the media were decreased. But, CODcr, removal efficiencies of active carbon was maintained more than 90% in this experimental range of the organic loading rate. Larger amount of microorganism was adsorbed on the active carbon which has very high specific surface area. At the organic loading rate of 16g CODcr,/l day, its adsorbed cell mass was 157mg/g. Comparing natural zeolite with roast celite, adsorbed cell mass did not increase in proportion to specific surface area of the media. Even though roast celite has the same specific surface area as the Pusuk stone, its organic removal ability was superior to that of the Pusuk stone, which explains that the relatively great surface roughness and the positive surface charge are important for cell adsorption. It was concluded that the support media for anaerobic fluidized reactor should have small wet density and small fuidization velocity, if possible, in order to increase cell adsorption by reducing the fluid shear stress.

  • PDF

Influences of Termite Activities on Ecosystem Carbon Cycle: Focusing on Coarse Woody Debris Decomposition (흰개미가 생태계 탄소 순환에 미치는 영향: 고사목 분해를 중심으로)

  • Kim, Seongjun;Lee, Jongyeol;Han, Seung Hyun;Chang, Hanna;Lee, Sohye;Yun, Hyeon Min;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • Globally, there are more than 2600 species of termites which adapted plenty of terrestrial ecosystems by various strategies such as making termite nest and society. Various studies were recently carried out on termites because they play significant roles in the context of carbon (C) cycle of terrestrial ecosystems. According to the results of previous studies, termite activities influenced the amount of soil organic C, methane emission, and organic matter decomposition. Termite nests, where termite biomass was concentrated, exhibited 1.8 times higher soil organic C concentration than reference soils, and emitted $0.0-6.0kg\;ha^{-1}year^{-1}$ of methane in tropical forests and savannas. Feeding activity of termites, in addition, accelerated coarse woody debris (CWD) decomposition by increasing the surface area to volume ratio of CWD. Especially, CWD decomposition induced by the Rhinotermitidae family appeared to be significant for the C cycle in temperate forests. However, more studies should be conducted on termite-induced CWD decomposition in temperate forests because few studies have dealt with it. The termite-induced CWD decomposition could be measured by preparing disc-shaped CWD samples, excluding access of termites to the CWD samples, and comparing the decomposition rate of the CWD samples with and without the termite exclusion treatment. Studies on the termite-induced CWD decomposition would contribute to further elucidation of the C cycle in temperate forests.

Possibility of aerobic stabilization technology for reducing greenhouse gas emissions from landfills in Korea (국내 폐기물매립지 온실가스 감축을 위한 호기성 안정화 공법의 적용 가능성)

  • Ban, Jong-Ki;Park, Jin-Kyu;Kim, Kyung;Yoon, Seok-Pyo;Lee, Nam-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.4
    • /
    • pp.40-51
    • /
    • 2015
  • This study is to estimate the viability of aerobic stabilization technology for reducing greenhouse gas (GHG) emissions from landfills in Korea. In this study, methane emissions were estimated by applying Landfill gas estimation model (LandGEM) to Y landfill in Korea. By comparison of an anaerobic condition (baseline) and an aerobic condition, the amount of $CO_2eq$ savings was calculated. The $CO_2eq$ savings take place inside the landfilled waste during aeration due to the conversion of previously anaerobic biodegradation to aerobic processes, releasing mainly $CO_2$. It was demonstrated that 86.6% of the total GHG emissions occurring under anaerobic conditions could be reduced by aerobic stabilization technology. This means the aerobic stabilization technology could reduce environmental contamination through early stabilization and GHG emissions considerably at the same time. Therefore, the aerobic stabilization technology is one of the optimal technologies that could be employed to domestic landfill sites to achieve sustainable landfill.

Characteristics of Anaerobic Biodegradability in Hydro-thermal Hydrolysate of Sewage Sludge (하수 슬러지 수열탄화액의 혐기적 유기물 분해 특성 연구)

  • Oh, Seung-Yong;Yoon, Young-Man
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.1
    • /
    • pp.35-45
    • /
    • 2017
  • In order to improve the anaerobic digestion efficiency of the sewage sludge, the methane potential of the hydrolysate generated from the hydro-thermal reaction at 170, 180, 190, 200, 210, $220^{\circ}C$ was analyzed and the constitutional characteristics of the organic materials were estimated by dividing organic materials of hydro-thermal hydrolysate into easily biodegradable, decomposition resistant, and non-biodegradable organic materials applying the parallel first order kinetics model. The ultimate methane potential of sewage sludge hydro-thermal hydrolysate increased to 0.39, 0.39, 0.40, 0.44, 0.45, and $0.46Nm^3/kg-VS_{added}$ as hydro-thermal reaction temperature increased from 170, 180, 190, 200, 210, $220^{\circ}C$. It has been shown that the organic matter of sewage sludge is solubilized to increase the content of biodegradable organic material($VS_B$). The easily degradable organic matter($VS_e$) content was highest at hydro-thermal reaction temperature of 200 and $210^{\circ}C$, and optimum hydro-thermal reaction temperature for organic matter solubilization of sewage sludge was in the range of $200{\sim}210^{\circ}C$. In addition, the amount of biodegradable organic material($VS_B$) and easily biodegradable organic matter ($VS_e$) in the hydrolysate of sewage sludge was the highest at hydro-thermal reaction temperature of $200^{\circ}C$.

Feasibility Study of Pressure Letdown Energy Recovery from the Natural Gas Pressure Reduction Stations in South Korea (한국의 천연가스 도시정압기지에서 감압에너지 회수에 대한 타당성 연구)

  • Yoo, Han Bit;Hong, Seongho;Kim, Hyo
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.3
    • /
    • pp.9-17
    • /
    • 2015
  • Almost all of the natural gas consumed in South Korea is compressed into very high pressure for the transportation through the underground pipelines, then reduced in pressure regulation stations before delivery to the consumer. For pressure reduction, expansion valves have been used due to the simple and effective installation, but recover none of the energy in the gas during compression. Hence, turbo-expanders are proposed instead of the valves to accomplish the same pressure letdown function and recover some of the compression energy in the form of shaft work converting into electric powers. Here we have theoretically calculated the electric powers at the pressure reduction from 68.7 bar to 23 bar (which are the average values taken at the inlet and outlet points of the expansion valve in medium-pressure regulation stations) according to the inlet conditions of temperature and flow rate. The natural gas is considered as two cases of a pure methane and the mixture of hydrocarbons with a very small amount of nitrogen, and the Peng-Robinson equation of state is employed for the calculation of required thermodynamic properties. The electric energy is recovered as much as 1596 MW(methane) and 1567 MW(mixture) based on the total supply of natural gas in 2013.

Continuous Mesophilic-Dry Anaerobic Digestion of Organic Solid Waste (유기성고형폐기물의 연속 중온 건식혐기성소화)

  • Oh, Sae-Eun;Lee, Mo-Kwon;Kim, Dong-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.5
    • /
    • pp.341-345
    • /
    • 2009
  • Continuous dry anaerobic digestion of organic solid wastes (30% TS, Total Solids) comprised of food waste and paper was performed under mesophilic condition. During the operation, hydraulic retention time (HRT) was decreased as follows: 150 d, 100 d, 60 d, and 40 d, which corresponded to the solid loading rate of 2.0, 3.0, 5.0, and 7.5 kg TS/$m^3$/d, respectively. Volumetric biogas production rate ($m^3$/$m^3$/d) increased as HRT decreased, and the highest biogas production rate of 3.49${\pm}$0.31 $m^3$/$m^3$/d was achieved at 40 d of HRT. At this HRT, high volatile solids (VS) reduction of 76% was maintained, and methane production yield of 0.25 $m^3$/kg $TS_{added}$ was achieved, indicating 67.4% conversion of organic solid waste to bioenergy. The highest biogas production yield of 0.52 $m^3$/kg $TS_{added}$ was achieved at 100 d of HRT, but it did not change much with respect to HRT. For the ease feed pumping, some amount of digester sludge was recycled and mixed with fresh feed to decrease the solid content. Recirculation volume of 5Q was found to be the optimal in this experimental condition. Specific methanogenic activity (SMA) of microorganisms at mesophilic-dry condition was 2.66, 1.94, and 1.20 mL $CH_4$/g VS/d using acetate, butyrate, and propionate as a substrate, respectively.