Browse > Article
http://dx.doi.org/10.5855/ENERGY.2013.22.4.347

Biological conversion of CO2 to CH4 in anaerobic fixed bed reactor under continuous operation  

Kim, Jaehyung (Graduate School of energy and Environment, Seoul National University of Technology & Science)
Koo, Hyemin (Graduate School of energy and Environment, Seoul National University of Technology & Science)
Chang, Wonseok (District Heating Technology Research Institute, Korea District Heating Corp)
Pak, Daewon (Graduate School of energy and Environment, Seoul National University of Technology & Science)
Publication Information
Abstract
This study was carried out to examine different mole ratio of $H_2/CO_2$ and EBCT using the continuous system in the lab scale throughout biological methods with accumulated hydrogenotrophic methanogen that can convert $CO_2$ to $CH_4$. The experimental-based results with various gas mixtures of mole ratio of 4:1($H_2/CO_2$) and 5:1($H_2/CO_2$), $H_2$ was converted more than 99% conversion rate. In case of $CO_2$, 4:1($H_2/CO_2$) and 5:1($H_2/CO_2$) were $74.45{\pm}0.33%$, $95.8{\pm}10.7%$, respectively, in addition, the study was confirmed that the amount of $H_2$ was more needed than stoichiometric equations, where approach methods are empirical versus theoretical frameworks, for converting total $CO_2$. As such, we have noticed that $H_2$ was used for energy source of hydrogenotrophic methanogen for maintaining life. Regarding the results of the ratio of treatment by retention time, limitation of treatment capacity showed that $H_2$(99.9%) and $CO_2$(96.23%) at EBCT 3.3 hrs indicated stable conversion ratio, as well as appeared that methane production rate and $CO_2$ fixation rate were investigated $1.15{\pm}0.02m^3{\cdot}m^{-3}{\cdot}day^{-1}$ and $2.01{\pm}0.04kg{\cdot}m^{-3}{\cdot}day^{-1}$, respectively.
Keywords
Hydrogenotrophic methanogen; Hydrogen-oxidizing; Carbon Dioxide; Methane; Fixation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. Solomon et al., E. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, Cambridge, 2007.
2 Lashof, D. A.; Ahuja, D. R. Relative Contributions of Greenhouse Gas Emissions to Global Warming. Nature 1990, 344, 529-531.   DOI
3 B. Metz , O. Davidson , H. de Coninck, M. Loos, L. Meyer, Carbon Dioxide Capture and Storage. Special Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, Cambridge, 2005.
4 Omae, I. Aspects of Carbon Dioxide Utilization. Catal. Today 2006, 115, 33-52.   DOI   ScienceOn
5 Riduan, S. N.; Zhang, Y. Recent Developments in Carbon Dioxide Utilization Under Mild Conditions. Dalton Trans. 2010, 39, 3347-57.   DOI   ScienceOn
6 Otsuki, T. A Study for the Biological CO2 Fixation and Utilization System. Sci. Total Environ. 2001, 277, 21-25.   DOI   ScienceOn
7 Moroney, J.; Somanchi, A. How Do Algae Concentrate CO2 to Increase the Efficiency of Photosynthetic Carbon Fixation? Plant Physiol. 1999, 119, 9-16.   DOI   ScienceOn
8 Chaumont, D. Biotechnology of Algal Biomass Production: a Review of Systems for Outdoor Mass Culture. J. Appl. Phycol. 1993, 5, 593-604.   DOI   ScienceOn
9 Chen, C. Y.; Yeh, K. L.; Aisyah, R.; Lee, D. J.; Chang, J. S. Cultivation, Photobioreactor Design and Harvesting of Microalgae for Biodiesel Production: A Critical Review. Bioresour. Technol. 2011, 102, 71-81.   DOI   ScienceOn
10 Ferry, J. G. Biochemistry of Methanogenesis. Crit. Rev. Biochem. Mol. Biol. 1992, 27, 473-503.   DOI
11 Demirel, B.; Scherer, P. The Roles of Acetotrophic and Hydrogenotrophic Methanogens During Anaerobic Conversion of Biomass to Methane: a Review. Rev. Environ. Sci. Bio/Technology 2008, 7, 173-190.   DOI   ScienceOn
12 Bryant, M. P.; McBride, B. C.; Wolfe, R. S. Hydrogen-Oxidizing Methane Bacteria. I. Cultivation and Methanogenesis. J. Bacteriol. 1968, 95, 1118-23.
13 Langenberg, K. F.; Bryant, M. P.; Wolfe, R. S. Hydrogen-Oxidizing Methane Bacteria. II. Electron microscopy. J. Bacteriol. 1968, 95, 1124-1129.
14 Qiu, Y.-L.; Hanada, S.; Ohashi, A.; Harada, H.; Kamagata, Y.; Sekiguchi, Y. Syntrophorhabdus Aromaticivorans Gen. Nov., Sp. Nov., the First Cultured Anaerobe Capable of Degrading Phenol to Acetate in Obligate Syntrophic Associations with a Hydrogenotrophic Methanogen. Appl. Environ. Microbiol. 2008, 74, 2051-2058.   DOI   ScienceOn
15 Ako, O. Y.; Kitamura, Y.; Intabon, K.; Satake, T. Steady State Characteristics of Acclimated Hydrogenotrophic Methanogens on Inorganic Substrate in Continuous Chemostat Reactors. Bioresour. Technol. 2008, 99, 6305-6310.   DOI   ScienceOn
16 Qiu, Y.-L.; Sekiguchi, Y.; Hanada, S.; Imachi, H.; Tseng, I.-C.; Cheng, S.-S.; Ohashi, A.; Harada, H.; Kamagata, Y. Pelotomaculum Terephthalicum Sp. Nov. and Pelotomaculum Isophthalicum Sp. Nov. Two Anaerobic Bacteria That Degrade Phthalate Isomers in Syntrophic Association with Hydrogenotrophic Methanogens. Arch. Microbiol. 2006, 185, 172-182.   DOI   ScienceOn
17 Cadillo-Quiroz, H.; Yavitt, J. B.; Zinder, S. H. Methanosphaerula Palustris Gen. Nov., Sp. Nov., a Hydrogenotrophic Methanogen Isolated from a Minerotrophic Fen Peatland. Int. J. Syst. Evol. Microbiol. 2009, 59, 928-935.   DOI   ScienceOn
18 Cheng, S.; Xing, D.; Call, D. F.; Logan, B. E. Direct Biological Conversion of Electrical Current into Methane by Electromethanogenesis. Environ. Sci. Technol. 2009, 43, 3953-8.   DOI   ScienceOn
19 Sato, K.; Kawaguchi, H.; Kobayashi, H. Bio-Electrochemical Conversion of Carbon Dioxide to Methane in Geological Storage Reservoirs. Energy Convers. Manag. 2013, 66, 343-350.   DOI   ScienceOn
20 Jeon, B. Y.; Kim, S. Y.; Park, Y. K.; Park, D. H. Enrichment of Hydrogenotrophic Methanogens in Coupling with Methane Production Using an Electrochemical Bioreactor. J. Microbiol. Biotechnol. 2009, 19, 1665-71.   DOI   ScienceOn
21 Ahring, B. K.; Ibrahim, A. A.; Mladenovska, Z. Effect of Temperature Increase from 55 to 65 Degrees C on Performance and Microbial Population Dynamics of an Anaerobic Reactor Treating Cattle Manure. Water Res. 2001, 35, 2446-2452.   DOI   ScienceOn
22 Berg, I. a Ecological Aspects of the Distribution of Different Autotrophic CO2 Fixation Pathways. Appl. Environ. Microbiol. 2011, 77, 1925-1936.   DOI   ScienceOn
23 Hawkins, A. S.; McTernan, P. M.; Lian, H.; Kelly, R. M.; Adams, M. W. Biological Conversion of Carbon Dioxide and Hydrogen into Liquid Fuels and Industrial Chemicals. Curr. Opin. Biotechnol. 2013, 24, 376-384.   DOI   ScienceOn
24 Lee, J. C.; Kim, J. H.; Chang, W. S.; Pak, D. Biological Conversion of CO2 to CH4 Using Hydrogenotrophic Methanogen in a Fixed Bed Reactor. J. Chem. Technol. Biotechnol. 2012, 87, 844-847.   DOI   ScienceOn
25 Schill, N.; von Stockar, U. Thermodynamic Analysis of Methanobacterium Thermoautotrophicum. Thermochim. Acta 1995, 251, 71-77.   DOI   ScienceOn
26 Groenestijn, J. W.; Hesselink, P. G. M. Biotechniques for Air Pollution Control. Biodegradation 1994, 4, 283-301.   DOI   ScienceOn
27 Gerhard, E. Optimisation et etude calorimetrique de cultures de Methanobacterium thermoautotrophicum. Ph.D. Thesis, Swiss Federal Institute of Technology Zurich, Zurich, 1991.
28 Devinny, J. S.; Deshusses, M. A.; Webster, T. S. Biofiltration for Air Pollution Control; Lewis Publishers, U.S., 1998.