DOI QR코드

DOI QR Code

Characteristics of Anaerobic Biodegradability in Hydro-thermal Hydrolysate of Sewage Sludge

하수 슬러지 수열탄화액의 혐기적 유기물 분해 특성 연구

  • 오승용 (한경대학교 바이오가스연구센터) ;
  • 윤영만 (한경대학교 바이오가스연구센터)
  • Received : 2017.02.01
  • Accepted : 2017.02.21
  • Published : 2017.03.30

Abstract

In order to improve the anaerobic digestion efficiency of the sewage sludge, the methane potential of the hydrolysate generated from the hydro-thermal reaction at 170, 180, 190, 200, 210, $220^{\circ}C$ was analyzed and the constitutional characteristics of the organic materials were estimated by dividing organic materials of hydro-thermal hydrolysate into easily biodegradable, decomposition resistant, and non-biodegradable organic materials applying the parallel first order kinetics model. The ultimate methane potential of sewage sludge hydro-thermal hydrolysate increased to 0.39, 0.39, 0.40, 0.44, 0.45, and $0.46Nm^3/kg-VS_{added}$ as hydro-thermal reaction temperature increased from 170, 180, 190, 200, 210, $220^{\circ}C$. It has been shown that the organic matter of sewage sludge is solubilized to increase the content of biodegradable organic material($VS_B$). The easily degradable organic matter($VS_e$) content was highest at hydro-thermal reaction temperature of 200 and $210^{\circ}C$, and optimum hydro-thermal reaction temperature for organic matter solubilization of sewage sludge was in the range of $200{\sim}210^{\circ}C$. In addition, the amount of biodegradable organic material($VS_B$) and easily biodegradable organic matter ($VS_e$) in the hydrolysate of sewage sludge was the highest at hydro-thermal reaction temperature of $200^{\circ}C$.

본 연구는 하수슬러지의 혐기소화 효율 향상을 위하여 유기물 가용화를 위한 수열탄화 최적 온도조건을 규명하고자 170, 180, 190, 200, 210, $220^{\circ}C$의 수열탄화 반응에서 생성된 수열탄화액의 메탄퍼텐셜을 분석하였으며, 병열 1차 반응식(Parallel first order kinetics model)을 적용하여 수열탄화액의 유기물을 이분해성, 분해저항성, 난분해성 유기물로 분획하여 유기물의 구성 특성을 추정하였다. 하수슬러지의 누적 메탄생산곡선은 회분식 혐기반응기 운전 후기까지 지속적으로 증가하는 양상을 보였으며 병열 1차 반응식을 적용하여 합리적인 최종메탄퍼텐셜($B_u$)의 분석이 가능하였다. 하수슬러지 수열탄화액의 최종 메탄퍼텐셜은 수열탄화온도가 170, 180, 190, 200, 210, $220^{\circ}C$로 증가함에 따라 각각 0.39, 0.39, 0.40, 0.44, 0.45, $0.46Nm^3/kg-VS_{added}$로 증가하였으며, 수열탄화 반응온도의 상승은 하수슬러지의 유기물을 가용화 시켜 생분해성 유기물($VS_B$)의 함량을 증가시키는 것으로 나타났다. 이분해성 유기물($VS_e$) 함량은 수열탄화 반응온도 $200{\sim}210^{\circ}C$에서 가장 높게 나타나 하수슬러지의 유기물 가용화를 위한 최적 수열탄화 반응온도는 $200{\sim}210^{\circ}C$의 범위로 나타났다. 또한 수열탄화 반응으로 얻어지는 하수슬러지 수열탄화액에서 생분해성 유기물($VS_B$)과 이분해성 유기물($VS_e$)의 양은 수열탄화 반응온도 $200^{\circ}C$에서 가장 높게 나타나 $200^{\circ}C$의 수열탄화 반응온도가 하수슬러지의 가용화에 최적 온도조건으로 판단되었다.

Keywords

References

  1. Ministry of Environment, "2015 Sewer statistics", (2015).
  2. Hendriks, A.T.W.M., Zeeman, F., "Pretreatments to enhance the digestibility of lignocellulosic biomass", Bioresour. Techno., 100(1), pp. 10-18. (2008). https://doi.org/10.1016/j.biortech.2008.05.027
  3. Hamzawi, N., Kennedy, K.J., McLean, D.D., "Anaerobic digestion of co-mingled municipal solid waste and sewage sludge", Water Sci. Technol., 38(2 pt 2), pp. 127-132. (1998). https://doi.org/10.1016/S0273-1223(98)00438-7
  4. Jhang, D., Chen, Y., Zhao, Y., Zhu, X., "New sludge pretreatment method to improve methane production in waste activated sludge digestion", Environ. Sci. Technol., 44, 12, pp. 4802-4808. (2010). https://doi.org/10.1021/es1000209
  5. Pilli, S., Bhunia, P., Yan, S., Leblanc, R.J., Tyagi R.D., Surampalli, R.Y., "Ultrasonic pretreatment of sludge : A review", Ultrason. Sonochem., 18(1), pp. 1-18. (2011). https://doi.org/10.1016/j.ultsonch.2010.02.014
  6. Luste, S., Luostarinen, S., "Enhanced methane production from ultrasound pre-treated and hygienized dairy cattle slurry", Waste Management, 31, pp. 2174-2179. (2011). https://doi.org/10.1016/j.wasman.2011.04.012
  7. Izumi, K., Okishio, Y.K., Nagao, N., Niwa C., Yamamoto, S., Toda, T., "Effects of particle size on anaerobic digestion of food waste", Int. Biodeterior. Biodegrad., 64(7), pp. 601-608. (2010). https://doi.org/10.1016/j.ibiod.2010.06.013
  8. Kepp, U., Machenbach, I., Weisz, N., Solheim, O.E., "Enhanced stabilisation of sewage sludge through thermal hydrolysis-Three years of experience with full scale plant", Water Sci. Technol., 42, pp. 89-96. (2000).
  9. Perez-Elvira, S.I., Fernandez-Polanco, F., Fernandez-Polanco, M., Rodraguez, P., Rouge, P., "Hydrothermal multivariable approach, full-scale feasibility study", Electron J. Biotechnol., 11(4). (2008).
  10. Carlsson, M., Lagerkvist, A., Morgan-Sagastume, F., "The effects of substrate pre-treatment on anaerobic digestion systems: A review", Waste Management, 32(9), pp. 1634-1650. (2012). https://doi.org/10.1016/j.wasman.2012.04.016
  11. Bougrier, C., Delgenas, J.P., Carrare, H., "Effects of thermal treatments on five different waste activated sludge samples solubilisation, physical properties and anaerobic digestion", Chem. Eng. J., 139, pp. 236-244. (2008). https://doi.org/10.1016/j.cej.2007.07.099
  12. Ajandouz, E.H., Desseaux, V., Tazi, S., Puigserver, A., "Effect of temperature and pH on the kinetics of caramelistion, protein cross-linking and Mailard reactions in aqueous medel systems". Food chem., 107, pp. 1244-1252. (2008). https://doi.org/10.1016/j.foodchem.2007.09.062
  13. Williams, A., Amat-Marco, M., & Collins, M.D. "Pylogenetic analysis of Butyrivibrio strains reveals three distinct groups of species within the Clostridium subphylm of the gram-positive bacteria", Int. J. Syst. Bacterol., 46, pp. 195-199. (1996). https://doi.org/10.1099/00207713-46-1-195
  14. Beuvink, J.M., Spoelstra, S.F., & Hogendrop, R.J., "An automated method for measuring the time course of gas production of feedstuffs incubated with buffered rumen fluid. Neth", J. Agri. Sci., 40, pp. 401-407. (1992).
  15. Lay, J.J., Li, Y.Y., & Noike, T., "Mathematical model for methane production from landfill bioreactor", J. Environ. Eng., 124(8), pp. 730-736. (1998). https://doi.org/10.1061/(ASCE)0733-9372(1998)124:8(730)
  16. Rao, M.S., Singh, S.P., Singh, A.K., & Sodha, M.S., "Bioenergy conversion studies of the organic fraction of MSW: assessment of ultimate bioenergy production potential of municipal garbage", Applied Energy, 66, pp. 75-87. (2000). https://doi.org/10.1016/S0306-2619(99)00056-2
  17. Luna-delRisco, M., Normak, A., & Orupald, K., "Biochemical methane potential of different organic wastes and energy crops from Estonia", Agronomy Research, 9(1-2), pp. 331-342. (2011).
  18. Shin, K.S., "Factor analysis of methane production potential from crop and livestock biomass", Ph.D. Thesis, Hankyong National University, Anseong, Korea. (2013).
  19. APHA., "Standard Methods for the Examination of Water and Wastewater, 21th Edition. (2005).
  20. Martins, S.I.F.S., Jongen, W.M.F., & Boekel, M.A.J.S., "A review of maillard reaction in food and implications to kinetic modelling", Trends food Sci. Technol., 11, pp. 364-373. (2001).