• 제목/요약/키워드: Methane Mitigation

검색결과 52건 처리시간 0.027초

매립지의 메탄 배출 저감을 위한 생물공학기술 (Biotechnology for the Mitigation of Methane Emission from Landfills)

  • 조경숙;류희욱
    • 한국미생물·생명공학회지
    • /
    • 제37권4호
    • /
    • pp.293-305
    • /
    • 2009
  • 메탄은 온실효과가 이산화탄소 보다 20배 이상인 대표적인 non-$CO_2$ 온실가스이다. 매립지는 주요 인위적 메탄 발생원으로, 매립지의 메탄 발생량은 연간 35~73 Tg(tera gram)으로 추정된다. 바이오커버(개방형 시스템)과 바이오필터(폐쇄형 시스템)을 이용하는 생물학적 방법은 메탄을 회수하여 자원화하기에는 메탄 농도가 너무 낮거나 가스 포집정이 설치되어 있지 않는 노후화된 매립지나 소규모 매립지로부터 메탄 배출을 저감할 수 있는 유용한 방법이다. 메탄을 유일탄소원과 에너지원으로 활용하는 메탄산화세균은 이러한 생물학적 방법에 있어 메탄을 산화시켜 제거하는데 매우 중요한 역할을 담당한다. 토양, compost, 지렁이 분변토 등과 같은 다양한 충전재를 이용하여 실험실 규모의 바이오커버/바이오필터의 메탄산화효율에 관한 많은 연구가 진행되었다. 이 중에서 compost는 가장 많이 이용되고 있는 충전재이고, compost를 이용한 바이오커버/바이오필터의 메탄산화속도는 50에서 $700\;g-CH_4\;m^{-2}\;d^{-1}$로 보고되고 있다. 또한, 실제 매립지에 파일럿 규모의 바이오커버/바이오필터를 설치하여 메탄 배출 저감 효과에 관한 연구도 진행되고 있다. 매립지의 메탄 배출 저감은 탄소배출권 거래와 연관될 수 있으므로, 바이오커버/바이오필터에 의한 메탄 저감량을 정확하게 평가하는 것이 매우 중요하다. 그러므로, 매립지 현장에 설치된 바이오커버/바이오필터의 성능을 평가하는 방법은 표준화되어야 하며, 메탄 저감량을 정확하게 정량화할 수 있는 방법 개발이 필요하다.

Effects of cultivation methods on methane emission in rice paddy

  • Kim, Sukjin;Choi, Jong-Seo;Kang, Shin-gu;Park, Jeong-wha;Yang, Woonho
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.319-319
    • /
    • 2017
  • Methane is the main greenhouse gas released from rice paddy field. Methane from paddy fields accounts for 11 % of the global total methane emission. The global warming potential (GWP) of methane is 25 times more than that of carbon dioxide on a mass basis. It is well known that most effective practice to mitigate methane in paddy is related to the water management during rice growing season and the use of organic matters. This study was conducted to investigate the effects of tillage and cultivation method on methane emission in paddy. Tillage (tillage and no-tillage) and cultivation methods (transplanting and direct seeding) were combined tillage-transplanting (T-T), tillage-wet hill seeding (T-W), tillage-dry seeding (T-D) and no-till dry seeding (NT-D) to evaluate methane mitigation efficiency. Daily methane emission was decreased on seeding treatments (T-W, T-D, NT-D) than transplanting treatment (T-T). Amount of methane emission during rice growing season is highest in T-T ($411.7CH_4\;kg\;ha^{-1}y^{-1}$) and lowest in NT-D treatment (89.7). In T-W and T-D treatments, methane emissions were significantly decreased by 36 and 51 % respectively compared with T-T. Methane emissions were highly correlated with the dry weight of whole rice plant ($R^2=0.62{\sim}0.93$). T-T treatment showed highest $R^2$ (0.93) among the four treatments. Rice grain yields did not significantly differ with the tillage and cultivation methods used. These results suggest that direct seeding practice in rice production could mitigate the methane emissions without loss in grain yield.

  • PDF

Effects of Rumen Protozoa of Brahman Heifers and Nitrate on Fermentation and In vitro Methane Production

  • Nguyen, S.H.;Li, L.;Hegarty, R.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권6호
    • /
    • pp.807-813
    • /
    • 2016
  • Two experiments were conducted assessing the effects of presence or absence of rumen protozoa and dietary nitrate addition on rumen fermentation characteristics and in vitro methane production in Brahman heifers. The first experiment assessed changes in rumen fermentation pattern and in vitro methane production post-refaunation and the second experiment investigated whether addition of nitrate to the incubation would give rise to methane mitigation additional to that contributed by defaunation. Ten Brahman heifers were progressively adapted to a diet containing 4.5% coconut oil distillate for 18 d and then all heifers were defaunated using sodium 1-(2-sulfonatooxyethoxy) dodecane (Empicol). After 15 d, the heifers were given a second dose of Empicol. Fifteen days after the second dosing, all heifers were allocated to defaunated or refaunated groups by stratified randomisation, and the experiment commenced (d 0). On d 0, an oral dose of rumen fluid collected from unrelated faunated cattle was used to inoculate 5 heifers and form a refaunated group so that the effects of re-establishment of protozoa on fermentation characteristics could be investigated. Samples of rumen fluid collected from each animal using oesophageal intubation before feeding on d 0, 7, 14, and 21 were incubated for in vitro methane production. On d 35, 2% nitrate (as $NaNO_3$) was included in in vitro incubations to test for additivity of nitrate and absence of protozoa effects on fermentation and methane production. It was concluded that increasing protozoal numbers were associated with increased methane production in refaunated heifers 7, 14, and 21 d after refaunation. Methane production rate was significantly higher from refaunated heifers than from defaunated heifers 35 d after refaunation. Concentration and proportions of major volatile fatty acids, however, were not affected by protozoal treatments. There is scope for further reducing methane output through combining defaunation and dietary nitrate as the addition of nitrate in the defaunated heifers resulted in 86% reduction in methane production in vitro.

발효 황금 뿌리 추출물의 항균, 항산화 효과 및 메탄가스 저감 효과 In Vitro (Analysis of Antibacterial, Antioxidant, and In Vitro Methane Mitigation Activities of Fermented Scutellaria baicalensis Georgi Extract)

  • ;송재용;이기환;김수연;강주희;이상무;최영민;조상범;배귀석;장문백;김은중
    • 한국유기농업학회지
    • /
    • 제24권4호
    • /
    • pp.735-746
    • /
    • 2016
  • This study was conducted to investigate the antibacterial, antioxidant, and in vitro greenhouse gas mitigation activities of fermented Scutellaria baicalensis Georgi extract. Seven starter cultures were used, comprising four of lactic acid bacteria and three of Saccharomyces cerevisiae. Ten grams of S. baicalensis Georgi powder was diluted in 90 mL autoclaved MRS broth. Each seed culture was inoculated with 3-10% (v/v) S. baicalensis Georgi MRS broth and incubated at $30^{\circ}C$ for 48 h. Among the starter cultures used, only Lactobacillus plantarum EJ43 could withstand the fermentation conditions. This fermentation broth was dried and extracted with ethanol to assess its antibacterial, antioxidant, and in vitro methane mitigation activities. The extract of S. baicalensis Georgi fermented by L. plantarum EJ43 (SBLp) showed higher antibacterial activity (bigger clear zone) compared to the unfermented S. baicalensis Georgi extract (SB0). SBLp also presented 1.2 folds higher antioxidant activity than SB0. During in vitro rumen fermentation, SBLp showed reduction in methane production compared to SB0 or the control. In conclusion, fermentation by L. plantarum EJ43 may enhance antibacterial and antioxidant activities of S. baicalensis Georgi and decrease enteric methane production.

In vitro Screening of Essential Oil Active Compounds for Manipulation of Rumen Fermentation and Methane Mitigation

  • Joch, M.;Cermak, L.;Hakl, J.;Hucko, B.;Duskova, D.;Marounek, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권7호
    • /
    • pp.952-959
    • /
    • 2016
  • The objective of this study was to investigate the effects of 11 active compounds of essential oils (ACEO) on rumen fermentation characteristics and methane production. Two trials were conducted. In trial 1, ACEO (eugenol, carvacrol, citral, limonene, 1,4-cineole, p-cymene, linalool, bornyl acetate, ${\alpha}$-pinene, and ${\beta}$-pinene) at a dose of $1,000{\mu}L/L$ were incubated for 24 h in diluted rumen fluid with a 70:30 forage:concentrate substrate (16.2% crude protein; 36.6% neutral detergent fiber). Three fistulated Holstein cows were used as donors of rumen fluid. The reduction in methane production was observed with nine ACEO (up to 86% reduction) compared with the control (p<0.05). Among these, only limonene, 1,4-cineole, bornyl acetate, and ${\alpha}$-pinene did not inhibit volatile fatty acid (VFA) production, and only bornyl acetate produced less methane per mol of VFA compared with the control (p<0.05). In a subsequent trial, the effects on rumen fermentation and methane production of two concentrations (500 and $2,000{\mu}L/L$) of bornyl acetate, the most promising ACEO from the first trial, were evaluated using the same in vitro incubation method that was used in the first trial. In trial 2, monensin was used as a positive control. Both doses of bornyl acetate decreased (p<0.05) methane production and did not inhibit VFA production. Positive effects of bornyl acetate on methane and VFA production were more pronounced than the effects of monensin. These results confirm the ability of bornyl acetate to decrease methane production, which may help to improve the efficiency of energy use in the rumen.

Characterization of the Bacterial Community Associated with Methane and Odor in a Pilot-Scale Landfill Biocover under Moderately Thermophilic Conditions

  • Yang, Hyoju;Jung, Hyekyeng;Oh, Kyungcheol;Jeon, Jun-Min;Cho, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권6호
    • /
    • pp.803-814
    • /
    • 2021
  • A pilot-scale biocover was constructed at a sanitary landfill and the mitigation of methane and odor compounds was compared between the summer and non-summer seasons. The average inlet methane concentrations were 22.0%, 16.3%, and 31.3%, and the outlet concentrations were 0.1%, 0.1%, and 0.2% during winter, spring, and summer, respectively. The odor removal efficiency was 98.0% during summer, compared to 96.6% and 99.6% during winter and spring, respectively. No deterioration in methane and odor removal performance was observed even when the internal temperature of the biocover increased to more than 40℃ at midday during summer. During summer, the packing material simultaneously degraded methane and dimethyl sulfide (DMS) under both moderately thermophilic (40-50℃) and mesophilic conditions (30℃). Hyphomicrobium and Brevibacillus, which can degrade methane and DMS at 40℃ and 50℃, were isolated. The diversity of the bacterial community in the biocover during summer did not decrease significantly compared to other seasons. The thermophilic environment of the biocover during summer promoted the growth of thermotolerant and thermophilic bacterial populations. In particular, the major methane-oxidizing species were Methylocaldum spp. during summer and Methylobacter spp. during the non-summer seasons. The performance of the biocover remained stable under moderately thermophilic conditions due to the replacement of the main species and the maintenance of bacterial diversity. The information obtained in this study could be used to design biological processes for methane and odor removal during summer and/or in subtropical countries.

Phenolic plant extracts are additive in their effects against in vitro ruminal methane and ammonia formation

  • Sinz, Susanne;Marquardt, Svenja;Soliva, Carla R.;Braun, Ueli;Liesegang, Annette;Kreuzer, Michael
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권7호
    • /
    • pp.966-976
    • /
    • 2019
  • Objective: The methane mitigating potential of various plant-based polyphenol sources is known, but effects of combinations have rarely been tested. The aim of the present study was to determine whether binary and 3-way combinations of such phenol sources affect ruminal fermentation less, similar or more intensively than separate applications. Methods: The extracts used were from Acacia mearnsii bark (acacia), Vitis vinifera (grape) seed, Camellia sinensis leaves (green tea), Uncaria gambir leaves (gambier), Vaccinium macrocarpon berries (cranberry), Fagopyrum esculentum seed (buckwheat), and Ginkgo biloba leaves (ginkgo). All extracts were tested using the Hohenheim gas test. This was done alone at 5% of dry matter (DM). Acacia was also combined with all other single extracts at 5% of DM each, and with two other phenol sources (all possible combinations) at 2.5%+2.5% of DM. Results: Methane formation was reduced by 7% to 9% by acacia, grape seed and green tea and, in addition, by most extract combinations with acacia. Grape seed and green tea alone and in combination with acacia also reduced methane proportion of total gas to the same degree. The extracts of buckwheat and gingko were poor in phenols and promoted ruminal fermentation. All treatments except green tea alone lowered ammonia concentration by up to 23%, and the binary combinations were more effective as acacia alone. With three extracts, linear effects were found with total gas and methane formation, while with ammonia and other traits linear effects were rare. Conclusion: The study identified methane and ammonia mitigating potential of various phenolic plant extracts and showed a number of additive and some non-linear effects of combinations of extracts. Further studies, especially in live animals, should concentrate on combinations of extracts from grape seed, green tea leaves Land acacia bark and determine the ideal dosages of such combinations for the purpose of methane mitigation.

한국 논토양(土壤)에서 물관리(管理)와 볏짚 시용(施用)에 따른 메탄 배출량(排出量)의 추정(推定) (Estimation of Methane Emission by Water Management and Rice Straw Application in Paddy Soil in Korea)

  • 신용광;윤성호;박무언
    • 한국토양비료학회지
    • /
    • 제28권3호
    • /
    • pp.261-265
    • /
    • 1995
  • 논토양에서 물관리 및 볏짚시용이 메탄배출에 미치는 영향을 알기 위하여 물관리로는 상시담수와 간단관개의 2처리로 하고 각각에 삼요소를 대조로 하여 볏짚의 시용효과를 조사하였다. 메탄배출량은 $0.066g\;CH_4m^{-2}d^{-1}{\sim}0.455g\;CH_4 m^{-2}d^{-1}$의 범위였다. 상시담수보다 간단관개의 NPK구에서는 70%, NPK+볏짚시용구에서는 47%의 메탄 배출저감효과가 인정되었다. 간단관개조건에서 볏짚을 전량 작토에 환원한다고 가정할 때 우리나라 메탄 총배출량은 399,590톤/년으로 추정된다. 이 양은 OECD의 참고값 대비 56%, Neue와는 51%, Matthew와는 62%로 낮고 Taylor와는 118%로 높다.

  • PDF

Effects of different feeding systems on ruminal fermentation, digestibility, methane emissions, and microbiota of Hanwoo steers

  • Seul Lee;Jungeun Kim;Youlchang Baek;Pilnam Seong;Jaeyong Song;Minseok Kim;Seungha Kang
    • Journal of Animal Science and Technology
    • /
    • 제65권6호
    • /
    • pp.1270-1289
    • /
    • 2023
  • This study evaluates how different feeding systems impact ruminal fermentation, methane production, and microbiota of Hanwoo steers native to Korea. In a replicated 2 × 2 crossover design over 29 days per period, eight Hanwoo steers (507.1 ± 67.4 kg) were fed twice daily using a separate feeding (SF) system comprising separate concentrate mix and forage or total mixed rations (TMR) in a 15:85 ratio. The TMR-feeding group exhibited a considerable neutral detergent fiber digestibility increase than the SF group. However, ruminal fermentation parameters and methane production did not differ between two feeding strategies. In addition, TMR-fed steers expressed elevated Prevotellaceae family, Christensenellaceae R-7 group, and an unidentified Veillonellaceae family genus abundance in their rumen, whereas SF-fed steers were rich in the Rikenellaceae RC9 gut group, Erysipelotrichaceae UCG-004, and Succinivibrio. Through linear regression modeling, positive correlations were observed between the Shannon Diversity Index and the SF group's dry matter intake and methane production. Although feeding systems do not affect methane production, they can alter ruminal microbes. These results may guide future feeding system investigations or ruminal microbiota manipulations as a methane-mitigation practice examining different feed ingredients.

Evaluation of in vitro ruminal fermentation of ensiled fruit byproducts and their potential for feed use

  • Mousa, Shimaa A;Malik, Pradeep K.;Kolte, Atul P.;Bhatta, Raghavendra;Kasuga, Shigemitsu;Uyeno, Yutaka
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권1호
    • /
    • pp.103-109
    • /
    • 2019
  • Objective: Ensiling of tannin-rich fruit byproducts (FB) involves quantitative and qualitative changes in the tannins, which would consequently change the rumen fermentation characteristics. This study aimed to evaluate whether ensiled FBs are effective in mitigating methane emission from ruminants by conducting in vitro assessments. Methods: Fruit byproducts (grape pomace, wild grape pomace, and persimmon skin) were collected and subjected to four-week ensiling by Lactobacillus buchneri inoculant. A defined feed component with or without FB samples (both fresh and ensiled material) were subjected to in vitro anaerobic culturing using rumen fluid sampled from beef cattle, and the fermentation parameters and microbial populations were monitored. Results: Reduced methane production and a proportional change in total volatile fatty acids (especially enhanced propionate proportion) was noted in bottles containing the FBs compared with that in the control (without FB). In addition, we found lower gene copy number of archaeal 16S rRNA and considerably higher levels of one of the major fibrolytic bacteria (Fibrobacter succinogenes) in the bottles containing FBs than in the control, particularly, when it was included in a forage-based feed. However, in the following cultivation experiment, we observed that FBs failed to exhibit a significant difference in methane production with or without polyethylene glycol, implying that tannins in the FBs may not be responsible for the mitigation of methane generation. Conclusion: The results of the in vitro cultivation experiments indicated that not only the composition but also ensiling of FBs affected rumen fermentation patterns and the degree of methane generation. This is primarily because of the compositional changes in the fibrous fraction during ensiling as well as the presence of readily fermented substrates, whereas tannins in these FBs seemed to have little effect on the ruminal fermentation kinetics.