Browse > Article

Biotechnology for the Mitigation of Methane Emission from Landfills  

Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
Ryu, Hee-Wook (Department of Chemical and Environmental Engineering, Soongsil University)
Publication Information
Microbiology and Biotechnology Letters / v.37, no.4, 2009 , pp. 293-305 More about this Journal
Abstract
Methane, as a greenhouse gas, is some 21~25 times more detrimental to the environmental than carbon dioxide. Landfills generally constitute the most important anthropogenic source, and methane emission from landfill was estimated as 35~73 Tg per year. Biological approaches using biocover (open system) and biofilter (closed system) can be a promising solution for older and/or smaller landfills where the methane production is too low for energy recovery or flaring and installation of a gas extraction system is inefficient. Methanotrophic bacteria, utilizing methane as a sole carbon and energy source, are responsible for the aerobic degradation (oxidation) of methane in the biological systems. Many bench-scale studies have demonstrated a high oxidation capacity in diverse filter bed materials such as soil, compost, earthworm cast and etc. Compost had been most often employed in the biological systems, and the methane oxidation rates in compost biocovers/boifilters ranged from 50 to $700\;g-CH_4\;m^{-2}\;d^{-1}$. Some preliminary field trials have showed the suitability of biocovers/biofilters for practical application and their satisfactory performance in mitigation methane emissions. Since the reduction of landfill methane emissions has been linked to carbon credits and trading schemes, the verified quantification of mitigated emissions through biocovers/biofilters is very important. Therefore, the assessment of in situ biocovers/biofilters performance should be standardized, and the reliable quantification methods of methane reduction is necessary.
Keywords
Climate change; methane; landfill; methanotrophic bacteria; biocover; biofilter;
Citations & Related Records

Times Cited By SCOPUS : 1
연도 인용수 순위
1 Auman, A. J. and M. E. Lidstrom. 2002. Analysis of sMMO containing type I methanotrophs in Lake Washington sediment. Environ. Microbiol. 4: 517-524   DOI   ScienceOn
2 Berger, J., L. V. Fornes, C. Ott, J. Jager, B. Wawra, and U. Zanke. 2005. Methane oxidation in a landfill cover with capillary barrier. Waste Manag. 25: 369-373   DOI   ScienceOn
3 Boeckx, P. and O. Van Cleemput. 1996. Methane oxidation in a neutral landfill cover soil-influence of moisture content, temperature, and nitrogen-turnover. J. Environ. Qual. 25: 178-183   DOI
4 Einola, J.-K. M., K. M. Sormunen, and J. A. Rintala. 2008. Methane oxidation in a boreal climate in an experimental landfill cover composed from mechanically-biologically treated waste. Sci. Tot. Environ. 407: 67-83   DOI   ScienceOn
5 Fung, I., J. John, J. Lerner, E. Matthews, M. Prather, L. P. Steele L. P., and P. J. Fraser. 1991. Three-dimensional model synthesis of the global methane cycle. J. Geophys. Res. 96: 13033-13065   DOI
6 Gebert, J., N. Stralis-Pavese, M. Alawi, and L. Bodrossy. 2008. Analysis of methanotrophic communities in landfill biofilters using diagnostic microarray. Environ. Microbiol. 10: 1175-1188   DOI   ScienceOn
7 Hilger, H. A., D. F. Cranford, and M. A. Barlaz. Methane oxidation and microbial exopolymer production in landfill cover soil. Soil Biol. Biochem. 32: 457-467   DOI   ScienceOn
8 Humer, M. and P. Lechner. 2001. Microbial methane oxidation for the reduction of landfill gas emissions. J. Solid Waste Technol. Manag. 27: 146-151   ScienceOn
9 Intergovernmental Panel on Climate Change (IPCC). 1995. Climate Change 1995: The science of climate change. Cambridge University Press. Cambridge. UK
10 Kumaraswamy, S., B. Ramakrishnan, and N. Sethunathan. 2001. Methane production and oxidation in an anoxic rice soil as influenced by inorganic redox species. J. Environ. Qual. 30: 2195-2201   DOI   PUBMED   ScienceOn
11 Min, H., Z. Y. Chen, W. X. Wu, and M. C. Chen. 2002. Microbial aerobic oxidation of methane in paddy soil. Nut. Cyc. Agroecosys. 64: 79-85   DOI   ScienceOn
12 Mohanty, R. S., K. Bharati, N. Deepa, and K. T. Adhya. 2000. Influence of heavy metals on methane oxidation in tropical rice soils. Ecotoxicol. Environ. Saf. 47: 277-284   DOI   ScienceOn
13 Popov, V. 2005. A new landfill system for cheaper landfill gas purification. Renewable Energy 30: 1021-1029   DOI   ScienceOn
14 Powelson, D. K., J. Chanton, T. Abichou, and J. Morales. 2006. Methane oxidation in water-spreading and compost biofilters. Waste Manag. Res. 24: 528-536   DOI   ScienceOn
15 Stein, V. B., J. P. A. Hettiaratchi, and G. Achari. 2001. A numerical model for biological oxidation and migration of methane in soils. ASCE Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management 5: 225-234   DOI   ScienceOn
16 Torsvik V. and L. Ovreas. 2002. Microbial diversity and function in soil: from genes to ecosystems. Curr. Opin. Microbiol. 5: 240-245   DOI   ScienceOn
17 Trotsenko, Y. A. and V. N. Khmelenina. 2002. Biology of extremophilic and extremotolerant methanotrophs. Arch. Microbiol. 177: 123-131   DOI   ScienceOn
18 United States Department of Energy (USDE). 2005. US climate change technology program-technology options for the near and long term, p. 210
19 Wilshusen, J. H., J. P. A. Hettiaratchi, and V. B. Stein. 2004. Long-term behavior of passively aerated compost, methanotrophic biofilter columns. Waste Manag. 24: 643-653   DOI   ScienceOn
20 Bogner, J., K. Spokas, J. Chanton, D. Powelson, and T. Abichou. 2005. Modeling landfill methane emissions from biocovers, a combined theoretical-empirical approach. Proceedings 10th International Waste Management and Landfill Symposium, Sardinia, Italy
21 Hettiaratchi, J. P. A., V. B. Stein, and G. Achari. 2000. Biofiltration: A cost-effective technique for controlling methane emissions from sub-surface sources. 6th Environmental Issues and Management of Waste in Energy and Mineral Production, Balkema Rotterdam, Netherlands
22 Ayalon, O., Y. Avnimelech, and M. Shechter. 2001. Solid waste treatment as a high-priority and low-cost alternative for greenhouse gas mitigation. Environ. Manag. 27: 697-704   DOI   ScienceOn
23 Intergovernmental Panel on Climate Change (IPCC). 2007. Climate change 2007: The physical science basis. Cambridge University Press. Cambridge. UK
24 Kravchenko, I. K. 2002. Methane oxidation in boreal peat soils treated with various nitrogen compounds. Plant Soil 242: 157-162   DOI   ScienceOn
25 Streese, J. and R. Stegmann. 2003. Microbial oxidation of methane from old landfills in biofilters. Waste Manag. 23: 573-580   DOI   ScienceOn
26 Einola J., K. Sormunen, A. Lensu, A. Leiskallio, M. Ettala, and J. Rintala. 2009. Methane oxidation at a surface-sealed boreal landfill. Waste Manag. doi:10.1016/j.wasman.2009. 01.007   DOI   ScienceOn
27 Huber-Humer, M., S. Roder, and P. Lechner. 2009. Approaches to assess biocover performance on landfills. Waste Manag. doi:10.1016/j.wasman. 2009.02.001   DOI   ScienceOn
28 Sly, L. I., L. J. Bryant, J. M. Cox, and J. M. Anderson. 1993. Development of a biofilter for the removal of methane from coal mine ventilation atmospheres. Appl. Microbiol. Biotechnol. 39: 400-404   ScienceOn
29 Stralis-Pavese, N., L. Bodrossy, T. G. Reichenauer, A. Weilharter, and A. Sessitsch. 2006. 16S rRNA based T-RFLP analysis of methane oxidizing bacteria-Assessment, critical evaluation of methodology performance and application for landfill site cover soils. Appl. Soil Ecol. 31: 251-266   DOI   ScienceOn
30 Spokas, K., J. Bogner, J. P. Chanton, M. Morcet, C. Aran, C. Graff, Y. M.-L. Golvan, and I. Hebe. 2006. Methane mass balance at three landfill sites: what is the efficiency of capture by gas collection systems?. Waste Manag. 6: 516-525   DOI   ScienceOn
31 Gebert, J., A. Groengroeft, and G. Miehlich. 2003. Kinetics of microbial landfill methane oxidation in biofilter. Waste Manag. 23: 609-619   DOI   ScienceOn
32 He, R., A. Ruan, C. Jiang, and D. S. Shen. 2008. Responses of oxidation rate and microbial communities to methane in simulated landfill cover soil microcosms. Biores. Technol. 99: 7192-7199   DOI   ScienceOn
33 Bodrossy, L., N. Stralis-Pavese, M. Konrad-Koszler, A. Weilharter, T. G. A. Reichenauer, D. Schofer, and A. Sessitsch. 2006. mRNA-based parallel detection of active methanotroph populations by use of a diagnostic microarray. Appl. Environ. Microbiol. 72: 1672-1676   DOI   ScienceOn
34 Jaffrin, A., N. Bentounes, A. M. Joan, and S. Makhlouf. 2003. Landfill biogas for heating greenhouses and providing carbon dioxide supplement for plant growth. Biosys. Eng. 86: 113-123   DOI   ScienceOn
35 Laurila, T., J.-P. Tuovinen, A. Lohila, J. Hatakka, M. Aurela, T. Thum, M. Pihlatie, J. Rinne, and T. Vesala. 2005. Measuring methane emissions from a landfill using a costeffective micrometeorological method. Geophys. Res. Lett. 32: L19808. doi:10.1029/2005GL023462   DOI   ScienceOn
36 Le Mer, J. P. and Roger. 2001. Production, oxidation, emission and consumption of methane by soils: A review. Eur. J. Soil Biol. 37: 25-50   DOI   ScienceOn
37 Abichou, T., K. Mahieu, L. Yuan, J. Chanton, and G. Hater. 2009. Effects of compost biocovers on gas flow and methane oxidation in a landfill cover. Waste Manag. 29: 1595-1601   DOI   ScienceOn
38 Cao, M., K. Gregson, and S. Marshall. 1998. Global methane emission from wetlands and its sensitivity to climate change. Atmos. Environ. 32: 3293-3299   DOI   ScienceOn
39 McDonald, I. R., L. Bodrossy, Y. Chen, and J. C. Murrell 2008. Molecular ecology techniques for the study of aerobic methanotrophs. Appl. Environ. Microbiol. 74: 1305-1315   DOI   ScienceOn
40 Perry, R. H., D. W. Green, and J. O. Maloney. 1997. Perry's chemical engineers handbook. 7th edn, McGraw-Hill, New York, USA
41 Muezzinoglu, A. 2003. A study of volatile organic sulfur emissions causing urban odors. Chemosphere 51: 245-252   DOI   PUBMED   ScienceOn
42 Houweling, S., T. Kaminski, F. Dentener, J. Lelieveld, and M. Heimann. 1999. Inverse modeling of methane sources and sinks using the adjoint of a global transport model. J. Geophys. Res. 104: 26137-26160   DOI
43 Lelieveld, J., P. Crutzen, and F. J. Dentener. 1998. Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus Series 50B: 128-150   DOI   ScienceOn
44 Tagaris, E., R.-E. P. Sotiropoulou, C. Pilinis, and C. P. Halvadakis. 2003. A methodology to estimate odors around landfill sites: the use of methane as an odor index and its utility in landfill sitting. J. Air Waste Manag. Assoc. 53: 629-634   DOI   PUBMED   ScienceOn
45 Hein, R., P. J. Crutzen, and M. Heinmann. 1997. An inverse modeling approach to investigate the global atmospheric methane cycle. Global Biogeochem. Cycles 11: 43-76   DOI   ScienceOn
46 Hilger, H. A., A. G. Wollum, and M. A. Barlaz. 2000. Landfill methane oxidation response to vegetation, fertilization, and liming. J. Environ. Qual. 29: 324-334   DOI
47 Bogner, J., M. Meadows, and P. Czepiel. 1997. Fluxes of methane between landfills and the atmosphere: natural and engineered controls. Soil Use Manag. 13: 268-277   DOI   ScienceOn
48 Hettiarachchi, V. C. 2005. Mass, heat, and moisture transport in ethanol biofilters. Ph. D. Thesis, University of Calgary, Canada
49 Brosseau, J. and M. Heitz. 1996. Trace gas compound emissions from municipal landfill sanitary sites. Atmos. Environ. 28: 285-293   DOI   ScienceOn
50 Janni, K. A., W. J. Maier, T. H. Kuehn, C. H. Yang, B. B. Bridges, D. Vesley, and M. A. Nellis. 2001. Evaluation of biofiltration of air-an innovative air pollution control strategy. ASHRAE Transactions 107: 198-214   ScienceOn
51 Stein, V. B. and J. P. A. Hettiaratchi. 2001. Methane oxidation in three Alberta soils: influence of soil parameters and methane flux rates. Environ. Technol. 22: 101-111   DOI   ScienceOn
52 Park, S., I. Lee, C. Cho, and K. Sung. 2008. Effects of earthworm cast and powdered activated carbon on methane removal capacity of landfill cover soils. Chemosphere 70: 1117-1123   DOI   ScienceOn
53 Park, S., K. W. Brown, and J. C. Thomas. 2002. The effect of various environmental and design parameters on methane oxidation in a model biofilter. Waste Manag. Res. 20: 434-444   DOI   ScienceOn
54 Park, S. Y., K. W. Brown, and J. C. Thomas. 2004. The use of biofilters to reduce atmospheric methane emissions from landfills: part I biofilter design. Wat. Air Soil Poll. 155: 63-85   DOI   ScienceOn
55 Reinhart, D. R. and A. B. Al-Yousfi. 1996. The impact of leachate recirculation on municipal solid waste landfill operating characteristics. Waste Manag. Res. 14:337-346   DOI   ScienceOn
56 Reay, D. S. and D. B. Nedwell. 2004. Methane oxidation in temperate soils: effects of inorganic N. Soil Biol. Biochem. 36: 2059-2065   DOI   ScienceOn
57 Christophersen, M. and P. Kjeldsen. 2001. Lateral gas transport in soil adjacent to an old landfill: factors governing gas migration. Waste Manag. Res. 19: 579-594   DOI   ScienceOn
58 Du Plessis, C. A., J. M. Strauss, E. M. T. Sebapalo, and K. H. J. Riedel. 2003. Empirical model for methane oxidation using a composted pine bark biofilter. Fuel 82: 1359-1365   DOI   ScienceOn
59 Bender, M. and R. Conrad. 1995. Effect of CH4 concentrations and soil conditions on the induction of CH4 oxidation activity. Soil Bio. Biochem. 27: 1517-1527   DOI   ScienceOn
60 Bajic, Z. and C. Zeiss. 2001. Methane oxidation in alternative landfill cover soils. Proceedings from the 24th Annual Landfill Gas Symposium, Dallas, USA
61 Nikiema, J., R. Brzezinski, and M. Heitz. 2007. Elimination of methane generated from landfills by biofiltration: a review. Rev. Environ. Sci. Biotechnol. 6: 261-284   DOI   ScienceOn
62 Im, J., S. Moon, K. Nam, Y.-J. Kim, and J. Y. Kim. 2009. Estimation of mass transport parameters of gases for quantifying CH4 oxidation in landfill soil covers. Waste Manag. 29: 869-875   DOI   ScienceOn
63 Intergovernmental Panel on Climate Change (IPCC). 2001. Climate change 2001: The scientific basis. Cambridge University Press. Cambridge. UK
64 Kettunen, R. H. and J. A. Rintala. 1997. The effect of low temperature (5-29oC) and adaptation on the methanogenic activity of biomass. Appl. Microbiol. Biotechnol. 48: 570-576   DOI   ScienceOn
65 Olivier., J. G. J., A. F. Bouwman, J. J. M. Berdowski, C. Veldt, J. P. J. Bloos, A. J. H. Visschedijk, C. W. M. van der Maas, and P. Y. J. Zasndveld. 1999. Sectoral emission inventories of greenhouse gases for 1990 on a per country basis as well as on 1${\times}$1. Environ. Sci. Pol. 2: 241-263   DOI   ScienceOn
66 Perdikea, K., A. K. Mehrotra, J. Patrick, and A. Hettiaratchi. 2008. Study of thin biocovers (TBC) for oxidizing uncaptured methane emissions in bioreactor landfills. Waste Manag. 28: 1364-1374   DOI   ScienceOn
67 Humer, M. and P. Lechner. 1999. Alternative approach to the elimination of greenhouse gases from old landfills. Waste Manag. Res. 7: 443-452
68 Parker, T., J. Dottridge, and S. Kelly. 2002. Investigation of the composition and emissions of trace components in landfill gas. Environmental Agency R&D Technical Report P1-438/TR
69 Hanson, R. S. and T. E. Hanson. 1996. Methanotrophic bacteria. Microbiological Rev. 60: 439–471
70 Huber-Humer, M. 2004. Abatement of landfill methane emissions by microbial oxidation in biocovers made of compost. Ph. D. Thesis, University of Natural Resources and Applied Life Sciences, Institute of Waste Management, Vienna, Austria
71 Visvanathan, C., D. Pokhrel, W. Cheimchaisri, J. P. A. Hettiaratchi, and J. S. Wu. 1999. Methanotrophic activities in tropical landfill cover soils: effects of temperature, moisture content and methane concentration. Waste Manag. Res. 17: 313-323   DOI
72 Philopoulos, A., J. Ruck, and D. McCartney. 2009. A laboratory-scale comparison of compost and sand-compostperlite as methane-oxidizing biofilter media. Waste Manag. Res. 27: 138-146   DOI   ScienceOn
73 Gebert, J. and A. Grongroft. Performance of a passively vented field-scale biofilter for the microbial oxidation of landfill methane. Waste Manag. 26: 399-407   DOI   ScienceOn
74 Hettiaratchi, J. P. A. and V. B. Stein. 2001. Methanobiofilters (MBFs) and landfill cover systems for CH4 emission mitigation. Proceedings of the 17th International Conference on Solid Waste Technology and Management. Philadelphia. USA
75 Kumar, S., A. N. Mondal, S. A. Gaikwad, S. Devotta, and R. N. Singh. 2004. Qualitative assessment of methane emission inventory from municipal solid waste disposal sites: a case study. Atmos. Environ. 38: 4921-4929   DOI   ScienceOn
76 Caldwell, S., J. R. Laidler, E. A. Brewer, J. O. Eberly, S. C. Sandborgh, and F. S. Colwell. 2008. Anaerobic oxidation of methane: mechanisms, bioenergetics, and the ecology of associated microorganisms. Environ. Sci. Technol. 42: 6791-6799   DOI   ScienceOn
77 De Visscher, A., D. Thomas, P. Boeckx, and O. Van Cleemput. 1999. Methane oxidation in simulated landfill cover soil environments. Environ. Sci. Technol. 33: 1854-1859   DOI   ScienceOn
78 Haubrichs, R. and R. Widmann. 2006. Evaluation of aerated biofilter systems for microbial methane oxidation of poor landfill gas. Waste Manag. 26: 408-416   DOI   ScienceOn
79 Nikiema, J., L. Bibeau, J. Lavoie, R. Brzezinski, J. Vigneux, and M. Heitz. 2004. Biogas, a real problem: Biofiltration, a promising solution. Proceedings of the USCCSC-TRG Conference on Biofiltration, Los Angeles, USA
80 Karl, T. R. and K. E. Trenbert. 2003. Modern global climate change. Science 302: 1719-1723   DOI   PUBMED   ScienceOn
81 Mosier, A. R., J. M. Duxbury, J. R. Freney, O. Heinemeyer, K. Minami, and D. E. Johnson. 1998. Mitigating agricultural emissions of methane. Climatic Change 40: 39-80   DOI   ScienceOn
82 Aye, L. and E. R. Widjaya. 2006. Environmental and economic analyses of waste disposal options for traditional markets in Indonesia. Waste Manag. 26:1180-1191   DOI   ScienceOn
83 Christophersen, M., L. Linderod, P. E. Jensen, and P. Kjeldsen. 2000. Methane oxidation at low temperature in soil exposed to landfill gas. J. Environ. Qual. 29: 1989-1977   DOI