• Title/Summary/Keyword: Methane Conversion

Search Result 275, Processing Time 0.022 seconds

The Study on Methane Reforming by CO2 and Steam for Manufacture of Synthesis Gas (합성가스 제조를 위한 CO2/수증기에 의한 메탄 개질반응 연구)

  • Cho, Wonihl;Lee, Seung-Ho;Mo, Yong-Gi;Sin, Donggeun;Baek, Youngsoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.4
    • /
    • pp.301-308
    • /
    • 2004
  • The methane reforming with $CO_2$ and steam for manufacture of synthesis gas over $Ni/ZrO_2$ catalyst was investigated. Mixed reforming carried out $CO_2$ dry reforming with $O_2$ and steam for development of DME process in pilot plant. To improve a catalyst deactivation by coke formation, the mixed reforming added carbon dioxide and steam as a oxidizer of the methane reforming was suggested. The result of experiments over commercial catalyst in $CO_2$ dry reforming has shown that the catalyst activity decrease rapidly after 20 hours. In case of $NiO-MgO/Al_2O_3$ catalyst, the deactivation of 20 percent after 30 hours was occurred. The activity of Ni/C catalyst still was not decreased dramatically after 100 hours. The effect of $H_2$ reforming with steam over $Ni/CO_2$ catalyst obtained the optimal conversion of methane and carbon dioxide, and could be produced synthesis gas at ratio of $H_2/CO$ under 1.5.

Partial oxidation of n-butane over ceria-promoted nickel/calcium hydroxyapatite (세리아가 첨가된 니켈/칼슘 하이드록시 아파타이트 촉매 상의 부탄 부분산화 연구)

  • Kwak, Jung-Hun;Lee, Sang-Yup;Kim, Mi-So;Nam, Suk-Woo;Lim, Tae-Hoon;Hong, Seong-Ahn;Yoon, Ki-June
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.89-92
    • /
    • 2007
  • Partail oxidation(POX) of n-butane was investigated in this research by employing ceria-promoted Ni/calcium hydroxyapatite catalysts ($Ce_xNi_{2.5}Ca_{10}(OH)_2(PO_4)_6$ ; x = $0.1{\sim}0.3$) which had recently been reported to exhibit good catalytic performance in POX of methane and propane. The experiments were carried out with changing ceria content, $O_2/n-C_4H_{10}$ ratio and temperature. As the $O_2/n-C_4H_{10}$ feed ratio increased up to 2.75, n-$C_4H_{10}$ conversion and $H_2$ yield increased and the selectivity of methane and other hydrocarbons decreased. But with $O_2/n-C_4H_{10}$ = 3.0, $n-C_4H_{10}$ conversion and $H_2$ yield decreased. This is considered due to that too much oxygen may inhibit the reduction of Ni or induce the oxidation of Ni, which results in poor catalytic activity. The optimum $O_2/n-C_4H_{10}$ ratio lay between 2.50 and 2.75. $Ce_{0.1}Ni_{2.5}Ca_{10}(OH)_2(PO_4)_6$ showed the highest $n-C_4H_{10}$ conversion and $H-2$ yield on the whole. In durability tests, higher hydrogen yield and better catalyst stability were obtained with the $O_2/n-C_4H_{10}$ ratio of 2.75 than with the ratio of 2.5.

  • PDF

Biomethanol Conversion from Biogas Produced by Anaerobic Digestion (혐기소화에 의한 Biogas 생산과 Biomethanol 전환에 관한 고찰)

  • Nam, Jae Jak;Shin, Joung Du;Hong, Seung Gil;Hahm, Hyun Sik;Park, Woo Kyun;So, Kyu Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.4
    • /
    • pp.93-103
    • /
    • 2006
  • Biogas is a byproduct after anaerobic digestion of organic materials and has been used as an energy source for heating and generating electricity. Demands of methanol for fuel mixed with gasoline and reactant in biodiesel production are steadily being increased. In this review, we summarized recent advancements in direct partial oxidation of methane to methanol with the brief history of methanol synthesis. The steam reforming and the catalytic oxidation of methane to methanol were compared, the former of which are mainly used in industrial scale and the latter in a stage of research and development. On the basis of this review, the possibility of methanol conversion from biogas was proposed in the aspects of the technological feasibility and the economical practicability.

  • PDF

Copper ion Toxicity Causes Discrepancy between Acetate Degradation and Methane Production in Granular Sludge

  • Bae, Jin-Woo;Rhee, Sung-Keun;Jang, Am;Kim, In-S.;Lee, Sung-Taik
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.5
    • /
    • pp.849-853
    • /
    • 2002
  • Metal ions have an adverse effect on anaerobic digestion. In an acetate degradation test of upflow of anaerobic sludge blanket granules with $Cu^{2+}$, not all of the acetate that disappeared was stoichiometrically converted to methane. In the presence of 400 mg/g-VSS (volatile suspended solids) $Cu^{2+}$, only 26% of the acetate consumed was converted to methane. To study acetate conversion by other anaerobic microorganisms, sulfate and nitrate reductions were investigated in the presence of $Cu^{2+}$ Sulfate and nitrate reductions exhibited more resistance to $Cu^{2+}$than methanogenesis, and the granules reduced 2.2 mM and 5.4 mM of nitrate and sulfate, respectively, in the presence of 400 mg/g-VSS copper ion. However, the acetate degraded by sulfate and nitrate reductions was only 24% of the missing acetate that could have been stoichiometrically converted to $CO_2$. Accordingly, 76% of the acetate consumed appeared to have been converted to other unknown compounds.

Solar $CO_2$ Reforming of Methane Using $Ni/{\gamma}-Al_2O_3/Metallic$ foam device ($Ni/{\gamma}-Al_2O_3/Metallic$ device를 이용한 고온 태양열 메탄-이산화탄소 개질반응)

  • Shin, Il-Yoong;Lee, Ju-Han;Lee, Jin-Gyu;Seo, Tae-Beom
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.275-281
    • /
    • 2011
  • Solar reforming of methane with $CO_2$ was successfully tested with a direct irradiated absorber on a parabolic dish capable of $5kW_{th}$ solar power. The new type of catalytically activated metallic foam absorber was prepared, and its activity was tested. Ni was applied as the active metal on the gamma - alumina coated Ni metal foam for the preparation of the catalytically-activated metal foam layer. Compared to conventional direct irradiation of the catalytically-activated ceramic foam absorber, this new metallic foam absorber is found to exhibit a superior reaction performance at the relatively low insolation or at low temperatures. In addition, unlike direct irradiation of the catalytically-activated ceramic foam absorber, metallic foam absorber has better thermal resistance, which prevents the emergence of cracks caused by mechanical or thermal shock. The total solar power absorbed reached up to 2.1kW and the maximum $CH_4$ conversion was almost 40%.

  • PDF

Catalytically Stabilized Combustion Characteristics of Methane on Platinum Catalyst (백금 촉매에 의해 안정화된 메탄의 연소 특성)

  • Hwang, C.H.;Jeong, Y.S.;Lee, C.E.
    • 한국연소학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.152-161
    • /
    • 2000
  • The catalytically stabilized combustion of $CH_4$-air mixture on platinum catalyst was investigated numerically using a 2-D boundary layer model with detailed heterogeneous and homogeneous chemistries. The actual surface site density of monolith coated with platinum was decided by the comparison with experimental data. The comparisons were made between results for cases where only heterogeneous chemistry was allowed and both heterogeneous and homogeneous chemistries were allowed. It was found that the homogeneous reaction in the monolith had little effect on the change of temperature profile, methane conversion rate and light off location. The contributions of each reactions related with CO formation were discussed on the surface. The effects of operation conditions such as equivalence ratio, temperature, velocity and pressure at the entrance were studied. In thermal combustor, CO and NOx was produced less than 1 ppm at the exit and the production of $N_{2}O$ was more dominant than that of NO.

  • PDF

Optimal replacement of biomass for maximizing gas production

  • Lee, Hwa-Ki
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.10 no.2
    • /
    • pp.54-64
    • /
    • 1985
  • Biomass conversion processes have the potential for satisfying approximately 25% of the national demand for methane gas. At the current time very littel analytical work has been done to optimally design and operate the production facilities associated with these processes. This study was motivated by the high cost of these proposed systems. The biomass in storage decays (exponentially) with time while the batch methane production rate decreases (exponentially) over time. The basic problem is to determine the optimal residence times for batches in the anaerobic degester to maximize total production over a fixed planning horizon. The analysis characteries the form of the optimal policy and presents efficient algorithm for obtaining this solution.

  • PDF

Technology Trends of Fuel Cell Power Plant Based on Biogas Fuel (바이오가스 연료기반 연료전지발전 기술동향)

  • Lee, Jong-Gyu;Jeon, Jae-Ho;Lee, Jong-Yeon
    • New & Renewable Energy
    • /
    • v.4 no.3
    • /
    • pp.5-14
    • /
    • 2008
  • The target for the reduction of $CO_2$ emissions, as specified in the Kyoto Protocol, can only be achieved by an extended use of renewable fuels and the increasing of the energy efficiency. The energy generation from waste gases with a reasonable content of methane like biogas can significantly contribute to reach this target. A further reduction of greenhouse gas emissions is possible by increasing the electrical efficiency using progressive technologies. Fuel cells can be highly energy conversion devices. Utilizing biogas as the fuel for fuel cell systems offers an option that is technically feasible, potentially economically attractive and greenhouse gas neutral. High temperature fuel cells that are able to operate with carbon monoxide in the feed are well suited to these applications. Furthermore, because they do not require noble metal catalysts, the cost of high-temperature fuel cells has the greatest potential to become competitive in the near future compared to other types of fuel cells.

  • PDF

Hydrogen purification using membrane reactors

  • Barbieri, Giuseppe;Bernardo, Paola;Drioli, Enrico;Lee, Dong-Wook;Sea, Bong-Kuk;Lee, Kew-Ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.21-24
    • /
    • 2003
  • Methane steam reforming (MSR) was studied in a membrane reactor (MR) with a Pd-based and a porous alumina membranes. MRs showed methane conversion higher than that foresaw by the thermodynamic equilibrium for a traditional reactor (TR). Silica membranes prepared at KRICT were characterized with permeation tests on single gases ($N_2$, $H_2$ and $CH_4$). These silica membranes can be also used for high temperature applications such as $H_2$ separation $CO_2$ hydrogenation for methanol production is another reaction where $H_2O$ selective removal can be performed with these silica membranes.

  • PDF

Biogas Reforming through Microwave Receptor Heating (마이크로웨이브 수용체 가열을 통한 바이오가스 개질)

  • Young Nam Chun;June An
    • New & Renewable Energy
    • /
    • v.20 no.1
    • /
    • pp.126-134
    • /
    • 2024
  • Biogas, composed mainly of methane (CH4) and carbon dioxide (CO2), is a renewable gas that can serve as an alternative energy source. In this study, we developed a new microwave reformer and analyzed its reforming characteristics. We observed that higher temperatures of the microwave receptor led to increased reforming efficiency. By supplying appropriate amounts of methane and steam, we could prevent carbon generated from the thermal decomposition reaction of carbon dioxide from depositing on the catalytic active layer, thus avoiding the inhibition of catalytic activity. Hydrogen generation was enhanced when maintaining the biogas ratio and steam supply at adequate levels. Increasing the SiC ratio in the receptor improved the uniformity of temperature distribution and growth rate, resulting in higher conversion rates of the reforming process.