• Title/Summary/Keyword: Meter-in circuit

Search Result 81, Processing Time 0.026 seconds

Design and Fabrication of a Surge Impedance Meter (서지임피던스 측정기의 설계 및 제작)

  • Kil, Gyung-Suk;Rhyu, Keel-Soo;Kim, Il-Kwon;Moon, Byung-Doo;Kim, Hwang-Kuk;Park, Chan-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.6
    • /
    • pp.645-649
    • /
    • 2007
  • Ground systems flow fault currents into the ground, and suppress Ground Potential Rise (GPR) by the current. In this paper, we designed and fabricated a surge impedance meter to analyze the ground impedance in wide frequency ranges. The meter consists of a surge generator, a high speed sample/hold (S/H) circuit and an associated electronics. The surge generator produces surge voltage up to 5kV in ranges of $50\sim500ns$. Field tests were carried out to evaluate the surge impedance meter at a driven-rod ground system. The results showed that surge impedance of ground systems should be measured by various fast surge waveforms, since the impedance increases as the rise time of applied voltage increases.

A Development of Electronic Type Relay for Low Voltage Circuit Breaker based on Digital Signal Processing (디지털 신호 처리 기반 저압 차단기용 전자식 계전기 개발)

  • Park, Byung-Chul;Shon, Jong-Man;Song, Sung-Kun;Shin, Joong-Rin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.5
    • /
    • pp.81-88
    • /
    • 2013
  • A low voltage circuit breaker protects electrical equipments from over current and short faults of system by cutting the power supply. The breaker use a thermal magnetic type trip device from the past. In recent years, electronic type relays are applied due to useful functions and services. The purpose of this development is full digitalizing of relay functions of a low voltage breaker. It includes separation of current sensor from current transformer, digital signal processing, high speed relaying, and voltage measuring for power meter. The suggestions are tested and implemented by making prototype and testing its all relay functions.

Formation of electric circuit for printed circuit board using metal nano particles (금속 나노 입자를 이용한 인쇄 회로 기판의 회로 형성)

  • Joung, Jae-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.545-545
    • /
    • 2007
  • Recently, innovative process has been investigated in order to replace the conventional high-cost micro patterning processes on the electronic products. To produce desirable profit margins from this low cost products, printed circuit board(PCB), will require dramatic changes in the current manufacturing philosophies and processes. Innovative process using metal nano particles replaces the current industry standard of subtractive etched of copper as a highly efficient way to produce robust circuitry on low cost substrates. An advantage of using metal nano particles process in patterned conductive line manufacturing is that the process is additive. Material is only deposited in desired locations, thereby reducing the amount of chemical and material waste. Simply, it just draws on the substrate as glass epoxy or polyimide with metal nano particles. Particles, when their size becomes nano-meter scale, show some specific characteristics such as enhanced reactivity of surface atoms, decrease in melting point, high electric conductivity compared with the bulk. Melting temperature of metal gets low, the metal nano particles could be formated onto polymer substrates and sintered under $300^{\circ}C$, which would be applied in PCB. It can be getting the metal line of excellent electric conductivity.

  • PDF

Design and Measurement of SFQ DFFC and Inverter (단자속 양자 DFFC와 Inverter의 설계와 측정)

  • 정구락;홍희송;박종혁;임해용;강준희;한택상
    • Progress in Superconductivity
    • /
    • v.5 no.1
    • /
    • pp.17-20
    • /
    • 2003
  • We have designed and measured a SFQ(Single Flux Quantum) DFFC and an Inverter(NOT) for superconducting ALU(Arithmetic Logic Unit) development. To optimize the circuit, we used Julia, XIC, and L meter for circuit simulations and circuit layouts. The Inverter was consisted of a D Flip-Flop, a data input, a clock input and a data output. If a data pulse arrives at the inverter, then the output reads ‘0’ (no output pulse is produced) at the next clock period. If there is no input data pulse, it reads out ‘1’(output pulse is produced). The DFFC was consisted of a D flip-Flop, an Inverter, a Data in, a Clock in and two outputs. If a data pulse arrives at the DFFC circuit, then the output2 reads ‘1’ at the next clock period, otherwise it reads out ‘1’ to output1. Operation of the fabricated chip was performed at the liquid helium temperature and at the frequencies of 1KHz.

  • PDF

A Development of CRU for KODAS (한국형 배전자동화용 수용가 단말제어장치 개발)

  • Kim, Jong-Soo;Kye, Moon-Ho;Oh, Sang-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.419-421
    • /
    • 1994
  • A CRU (Customer Remote Unit) for KODAS(Korea Distribution Automatic System) is presented in the paper. This equipment works as a terminal unit for the Load Control and the AMR(Automatic Meter Reading). It is composed of control, drive, input, display, and communication parts. A CRU calculates and memorizes the active power, time-of-use, and demand by the pulse from watthour meter for AMR. It also transfers the data to Center Control System. It can measure current, voltage, and power factor by adding the simple circuit. For load control, It receives the necessary informations such as the load control periods, modes, and time intervals. It controls the load until the stopping commad comes. The system reliability has been proved using a prototype.

  • PDF

Development of a Microwave Level Meter Using YIG-VCO for Industrial Process (YIG-VCO를 사용한 산업용 마이크로파 거리계의 개발)

  • 김정목;임종수;전중창;김태수;안광호;이승학
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.1
    • /
    • pp.18-25
    • /
    • 2000
  • In this paper, we have designed a microwave level meter based on the FM-CW radar theory using a YIG-tuned oscillator (YTO). YTO has an excellent frequency linearity, so a linearizer circuit is not necessary for the level meter. It is shown that interference signals reflected from nearby obstacles can be removed by using a digital band-pass filter. An FIR band-pass filter is designed using the Kaiser window. The distance measurement has been performed in the outdoor test field. The measurement data have been obtained for the range of 1~40m with 1m step, and the results show that the standard deviation of the measured data is 2.33 cm. The level meter manufactured in this study can be applied usefully in the industrial facilities which are not accessible easily, for example, to measure the level of molten metal in the iron and steel company.

  • PDF

Identification of In-Home Appliance Types Based on Analysis of Current Consumption Using Energy Metering Circuit

  • Tran, Tin Trung;Pham, Trung Xuan;Kim, Jong-Wook
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.2
    • /
    • pp.79-88
    • /
    • 2017
  • One of the important applications of activity sensing in the home is energy monitoring. Many previous methodologies for detecting and recognizing household appliances have been proposed. This paper presents an approach that uses an energy metering circuit (EMC) to classify and identify the various electrical devices in home based on root-mean-square (RMS) consumed current value. EMC gathers the RMS current values created by appliance state transition (e.g., on to off) and apparatus operating process. In this paper, an identification algorithm is proposed to detect a change in current levels using the standard deviation of current signals and their average values. In addition, characteristic of the appliance is extracted concerning four feature parameters concerning the number of current levels, the minimum level, the maximum level, and signal-to-noise ratio (SNR) of them. Experiment results validate the reliable performance of the proposed identification method for 11 representative appliances.

The Effects of Task-Related Circuit Exercise Program Combined with Sensorimotor Training on Balance and Walking in Persons with Stroke : A pilot study (감각운동 훈련을 병행한 순환식 과제 지향 운동프로그램이 뇌졸중 환자의 보행 및 균형에 미치는 영향 : 예비연구)

  • Kim, Sunmin;Kang, Soonhee
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.4 no.4
    • /
    • pp.21-32
    • /
    • 2016
  • Purpose: The purpose of this study was to identify whether task-related circuit exercise program combined with sensorimotor training for 4 weeks could improve the balance and gait in stroke patients. Method: Fifteen stroke patients who had agreed with the study were randomly divided into 3 groups categorized as task-related circuit exercise program combined with sensorimotor training group (experimental group 1, n=5), task-related circuit exercise program group (experimental group 2, n=5), and control subjects performed conventional physical therapy (control group, n=5). The balance and gait were assessed by BT-4 force platform system, Berg Balance Scale, 10meter Walk Test and Smart Step at before training and after training. Wilcoxon signed rank test was used to analyze change before and after intervention in intra-group. Kruskal Wallis H test, Mann-Whitney U test and Bonfferoni correction were used to analyze changes of all variables in inter-groups. Result: The experimental group 1 showed significant improvements in postural sway area, BBS scores, walking velocity and plantar pressures of affected foot, whereas the experimental group 2 showed significant improvements in BBS scores, and the control group were no significantly different in all variables following training. The changes of postural sway area and BBS scores in the experimental group 1 were significantly greater than them of the control group. The changes of postural sway area in the experimental group 1 was significantly greater than that of the experimental group 2. Conclusion: The result of this study suggest the task-related circuit exercise program combined with sensorimotor training is an effective intervention to improve balance and gait in stoke patients.

Hardware temperature compensation technique for hot-wire anemometer by using photoconductive cell (광도전성저항을 이용한 열선유속계의 하드웨어적 온도보상에 관한 연구)

  • Lee, Sin-Pyo;Go, Sang-Geun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.11
    • /
    • pp.3666-3675
    • /
    • 1996
  • A new hardware temperature compensation method for hot-wire anemometer is investigated and an analog compensating circuit is proposed in this article. A photoconductive cell is introduced here as a variable resistor in the anemometer bridge and the linearized output of a thermistor is used to monitor the input of the photoconductive cell. In contrast with the conventional method, any type of temperature sensor can be used for compensation if once the output of thermometer varies linearly with temperature. So the present technique can diversify the compensating means from a conventional passive compensating resistance to currently available thermometers. Because the resistance of a photoconductive cell can be set precisely by adopting a stabilizing circuit whose operation is based on the integration function of the operational amplifier, the accuracy of compensation can be enhanced. As an example of linearized thermometer, thermistor sensor whose output is linearized by a series resistor was used to monitor the fluid temperature variation. Validation experiment is conducted in the temperature ranged from 30 deg. C to 60 deg. C and the velocity up to 40 m/s. It is found that the present technique can be adopted as a compensating circuit for anemometer and hot-wire type airflow meter.

Pressure Control Characteristics of a 2-Way Solenoid Valve Driven by PWM Signal (2방향 전자밸브의 PWM 신호에 의한 압력제어 특성)

  • Jeong, Heon-Sul;Kim, Hyoung-Eui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1565-1576
    • /
    • 2002
  • By way of driving a 2-way on/off solenoid hydraulic valve with a pulse width modulation (PWM) signal, control of the pressure in a certain volume is frequently used in various applications. However, the pressure built-up according to the duty ratio and carrier frequency of the PWM signal is not so well understood. In order to clarify the characteristics of 2-way valve hydraulic pressure control systems, in this paper two formula fur the mean and ripple of the load pressure were derived through theoretical analysis. And the accuracy of the derived formula were verified by comparison with the experimental test result. Generally 2-way valve systems are constructed as a bleed-off circuit, while 3-way valves are used as a control element in a meter-in circuit pressure control system. In a bleed-off circuit, the system supply pressure from a hydraulic power pack does not remain constant, but changes according to their external load. In turn, the relief valve in the hydraulic power pack reacts accordingly showing complicated dynamic behavior, which makes an analytical study difficult. In order to resolve the problem, simple but accurate empirical dynamic models fer a bleed-off system were used in the course of formula derivation. As the result, selection criteria for two major control parameters of the driving signal is established and the basic strategy to suppress the unnecessary pressure fluctuation can be provided for a hydraulic pressure control system using a 2-way on/off solenoid valve.