• Title/Summary/Keyword: Meteorological condition

Search Result 487, Processing Time 0.033 seconds

An Off-Site Consequence Modeling for Accident Using Monte Carlo Method (몬테칼로 방법을 사용할 사고후 영향 평가모델)

  • Chang Sun Kang;Sae Yul Lee
    • Nuclear Engineering and Technology
    • /
    • v.16 no.3
    • /
    • pp.136-140
    • /
    • 1984
  • A new medal is presented in order to evaluate the risk from a nuclear facility following accidents directly combining the on-site meteorological data using the Monte Carlo Method. To estimate the radiological detriment to the surrounding population-at-large (collective dose equivalent), in this study the probability distribution of each meteorological element based upon on-site data is analyzed to generate atmospheric dispersion conditions. The random sampling is used to select the dispersion conditions at any given time of effluent releases. In this study it is considered that the meteorological conditions such as wind direction, speed and stability are mutually independent and each condition satisfies the Markov condition. As a sample study, the risk of KNU-1 following the large LOCA was calculated, The calculated collective dose equivalent in the 50 mile region population from the large LOCA with 50 percent confidence level is 2.0$\times$10$^2$ man-sievert.

  • PDF

Prediction of Defect Rate Caused by Meteorological Factors in Automotive Parts Painting (기상환경에 따른 자동차 부품 도장의 불량률 예측)

  • Pak, Sang-Hyon;Moon, Joon;Hwang, Jae-Jeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.290-291
    • /
    • 2021
  • Defects in the coating process of plastic automotive components are caused by various causes and phenomena. The correlation between defect occurrence rate and meteorological and environmental conditions such as temperature, humidity, and fine dust was analyzed. The defect rate data categorized by type and cause was collected for a year from a automotive parts coating company. This data and its correlation with environmental condition was acquired and experimented by machine learning techniques to predict the defect rate at a certain environmental condition. Correspondingly, the model predicted 98% from fine dust and 90% from curtaining (runs, sags) and hence proved its reliability.

  • PDF

Analyzing off-line Noah land surface model spin-up behavior for initialization of global numerical weather prediction model (전지구수치예측모델의 토양수분 초기화를 위한 오프라인 Noah 지면모델 스핀업 특성분석)

  • Jun, Sanghee;Park, Jeong-Hyun;Boo, Kyung-On;Kang, Hyun-Suk
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.3
    • /
    • pp.181-191
    • /
    • 2020
  • In order to produce accurate initial condition of soil moisture for global Numerical Weather Prediction (NWP), spin-up experiment is carried out using Noah Land Surface Model (LSM). The model is run repeatedly through 10 years, under the atmospheric forcing condition of 2008-2017 until climatological land surface state is achieved. Spin-up time for the equilibrium condition of soil moisture exhibited large variability across Koppen-Geiger climate classification zone and soil layer. Top soil layer took the longgest time to equilibrate in polar region. From the second layer to the fourth layer, arid region equilibrated slower (7 years) than other regions. This result means that LSM reached to equilibrium condition within 10 year loop. Also, spin-up time indicated inverse correlation with near surface temperature and precipitation amount. Initialized from the equilibrium state, LSM was spun up to obtain land surface state in 2018. After 6 months from restarted run, LSM simulates soil moisture, skin temperature and evaportranspiration being similar land surface state in 2018. Based on the results, proposed LSM spin-up system could be used to produce proper initial soil moisture condition despite updates of physics or ancillaries for LSM coupled with NWP.

The Influence of Meteorological Factors on PM10 Concentration in Incheon (기상인자가 미세먼지 농도에 미치는 영향)

  • Shin, Moon-Khee;Lee, Choong-Dae;Ha, Hyun-Sup;Choe, Choon-Suck;Kim, Yong-Hee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.3
    • /
    • pp.322-331
    • /
    • 2007
  • In this study, we have analyzed $PM_{10}$ concentration measured at Incheon Regional Air Monitoring Network (10 stations) and meteorological data at Incheon Weather Station to investigate factors (i.e. wind direction, wind speed, relative humidity, major meteorological phenomenon, and sea-land breezes existence) influencing $PM_{10}$ concentration in Incheon during 2005. Statistical differences among meteorological factors were assessed by Kruskal-Wallis test or Mann-Whitney U test. The main conditions causing high $PM_{10}$ concentration are summarized below; 1. When westerly wind prevailed (however, $PM_{10}$ decreased when winds were blowing from the east or north). 2. When the winds were calm, owing to accumulation of nearby emissions under stagnant conditions, or when the wind speed is in excess of 6 m/s, which shows the effect of fugitive dust produced by wind erosion. 3. Under the condition of high relative humidity and poor diffusion based on meteorological phenomenon such as fog, mist, and haze. 4. When the Sea-Land breezes existed, which occurred 70 days in Incheon during 2005 and contributed significantly to high $PM_{10}$ concentration in the coastal urban area. In conclusion, we have found that the meteorological factors have influence on $PM_{10}$ concentration in Incheon.

Preliminary Analysis of Data Quality and Cloud Statistics from Ka-Band Cloud Radar (Ka-밴드 구름레이더 자료품질 및 구름통계 기초연구)

  • Ye, Bo-Young;Lee, GyuWon;Kwon, Soohyun;Lee, Ho-Woo;Ha, Jong-Chul;Kim, Yeon-Hee
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.19-30
    • /
    • 2015
  • The Ka-band cloud radar (KCR) has been operated by the National Institute of Meteorological Research (NIMR) of Korea Meteorological Administration (KMA) at Boseong National Center for Intensive Observation of severe weather since 2013. Evaluation of data quality is an essential process to further analyze cloud information. In this study, we estimate the measurement error and the sampling uncertainty to evaluate data quality. By using vertically pointing data, the statistical uncertainty is obtained by calculating the standard deviation of each radar parameter. The statistical uncertainties decrease as functions of sampling number. The statistical uncertainties of horizontal and vertical reflectivities are identical (0.28 dB). On the other hand, the statistical uncertainties of Doppler velocity (spectrum width) are 2.2 times (1.6 times) larger at the vertical channel. The reflectivity calibration of KCR is also performed using X-band vertically pointing radar (VertiX) and 2-dimensional video disdrometer (2DVD). Since the monitoring of calibration values is useful to evaluate radar condition, the variation of calibration is monitored for five rain events. The average of calibration bias is 10.77 dBZ and standard deviation is 3.69 dB. Finally, the statistical characteristics of cloud properties have been investigated during two months in autumn using calibrated reflectivity. The percentage of clouds is about 26% and 16% on September to October. However, further analyses are required to derive general characteristics of autumn cloud in Korea.

Improvement of Automatic Present Weather Observation with In Situ Visibility and Humidity Measurements (시정과 습도 관측자료를 이용한 자동 현천 관측 정확도 향상 연구)

  • Lee, Yoon-Sang;Choi, Reno Kyu-Young;Kim, Ki-Hoon;Park, Sung-Hwa;Nam, Ho-Jin;Kim, Seung-Bum
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.439-450
    • /
    • 2019
  • Present weather plays an important role not only for atmospheric sciences but also for public welfare and road safety. While the widely used state-of-the-art visibility and present weather sensor yields present weather, a single type of measurement is far from perfect to replace long history of human-eye based observation. Truly automatic present weather observation enables us to increase spatial resolution by an order of magnitude with existing facilities in Korea. 8 years of human-eyed present weather records in 19 sites over Korea are compared with visibility sensors and auxiliary measurements, such as humidity of AWS. As clear condition agrees with high probability, next best categories follow fog, rain, snow, mist, haze and drizzle in comparison with human-eyed observation. Fog, mist and haze are often confused due to nature of machine sensing visibility. Such ambiguous weather conditions are improved with empirically induced criteria in combination with visibility and humidity. Differences between instrument manufacturers are also found indicating nonstandard present weather decision. Analysis shows manufacturer dependent present weather differences are induced by manufacturer's own algorithms, not by visibility measurement. Accuracies of present weather for haze, mist, and fog are all improved by 61.5%, 44.9%, and 26.9% respectively. The result shows that automatic present weather sensing is feasible for operational purpose with minimal human interactions if appropriate algorithm is applied. Further study is ongoing for impact of different sensing types between manufacturers for both visibility and present weather data.

Effects of Meteorological Conditions on Cloud and Snowfall Simulations in the Yeongdong Region: A Case Study Based on Ideal Experiments (영동지역 기상조건이 구름 및 강설 모의에 미치는 영향: 이상 실험 기반의 사례 연구)

  • Kim, Yoo-Jun;Ahn, Bo-Yeong;Kim, Baek-Jo;Kim, Seungbum
    • Atmosphere
    • /
    • v.31 no.4
    • /
    • pp.445-459
    • /
    • 2021
  • This study uses a cloud-resolving storm simulator (CReSS) to understand the individual effect of determinant meteorological factors on snowfall characteristics in the Yeongdong region based on the rawinsonde soundings for two snowfall cases that occurred on 23 February (Episode 1) and 13 December (Episode 2) 2016; one has a single-layered cloud and the other has two-layered cloud structure. The observed cloud and precipitation (snow crystal) features were well represented by a CReSS model. The first ideal experiment with a decrease in low-level temperature for Episode 1 indicates that total precipitation amount was decreased by 19% (26~27% in graupel and 53~67% in snow) compared with the control experiment. In the ideal experiment that the upper-level wind direction was changed from westerly to easterly, although total precipitation was decreased for Episode 1, precipitation was intensified over the southwestern side (specifically in terrain experiment) of the sounding point (128.855°E, 37.805°N). In contrast, the precipitation for Episode 2 was increased by 2.3 times greater than the control experiment under terrain condition. The experimental results imply that the low-level temperature and upper-level dynamics could change the location and characteristics of precipitation in the Yeongdong region. However, the difference in precipitation between the single-layered experiment and control (two-layered) experiment for Episode 2 was negligible to attribute it to the effect of upper-level cloud. The current results could be used for the development of guidance of snowfall forecast in this region.

Improvement and Observation of Condensation Particle Counter in Atmospheric Research Aircraft NARA for Condensation Particle Research in Korea (한반도 상공의 응결핵 연구를 위한 기상항공기 나라호의 응결핵입자계수기 개선 및 관측)

  • Jung, Woonseon;Ku, Jung Mo;Kim, Min-Seong;Shin, Hye-min;Ko, A-Reum;Chang, Ki-Ho;Cha, Joo Wan;Lee, Yong Hee
    • Journal of Environmental Science International
    • /
    • v.31 no.9
    • /
    • pp.803-813
    • /
    • 2022
  • In this study, we improved the water-based condensation particle counter in Atmospheric Research Aircraft NARA and investigated the condensation particle number concentration over the Korean peninsula. Pump and set point information were changed to improve the instrument used by aircraft for observation. Ground-based observational result showed that the error between two instruments, which are water-based condensation particle counter and butanol-based condensation particle counter, was 4.7%. Aerial observational result revealed that the number concentration before improvement indicate large variation with unstable condition, whereas the number concentration after improvement indicate a reasonable variation. After improvement, the number concentration was 706±499 particle/cm3 in the West Sea and 257±80 particle/cm3 in Gangwon-do, and these are similar to the concentration range reported in previous studies. Notably, this is the first attempt to use aerial observation with water-based condensation particle counter to investigate condensation particle number concentration.

Prediction of Road Traffic Noise By NMPB 2008 Considering Meteorological Effect (NMPB 2008의 기상학적 요소를 고려한 도로교통소음 예측)

  • Kim, Phillip;Ahn, So-yeon;Ryu, Hunjae;Park, Taeho;Chang, Seo Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.943-947
    • /
    • 2014
  • NMPB 2008을 포함한 일부 소음 예측식에서는 기상학적 요소를 고려할 수 있다. 특히 NMPB 2008을 이용하여 소음을 예측할 경우에는 기상학적인 요소의 고려는 필수적이다. 하지만, 우리나라의 실제 기상 상황을 반영할 수 있는 방법이 없는 것이 현실이다. 본 연구에서는 기상학적 요소를 적용하기 위해서 하향 굴절 발생 빈도를 적용하여 소음도를 비교하였다. 기상학적 요소의 하향 굴절 발생 빈도의 증가에 따라 소음도가 증가하는 것을 확인하였고, 1kHz 이상의 주파수에서 거리에 따른 소음도의 차이에 상대적으로 큰 영향을 미치는 것을 확인하였다. 기상학적 요소의 적용은 예측 소음도의 정확도를 향상시킬 것으로 기대된다.

  • PDF

Research on high effectiveness solar photovoltaics module choice by climate fluctuation (기후변화에 따른 고효율 태양광 모듈 산정에 관한 연구)

  • Choi, Hong-Kyoo;Choi, Shin-Gwon;Choi, Kyung-Han;Choi, Young-Jun;Choi, Dae-Won;Lee, Jung-Eun;Hwang, Sang-Gu
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.67-71
    • /
    • 2009
  • In this treatise, presented module choice plan that analyze relation with meteorological condition (work trillion amounts, mean air temperature, precipitation, cloudiness, wind speed etc.) because diagnoses June output amount of 247.5kW bulk type module and a-Si type module that is established in equal environment in our country and is the high effectiveness enemy more by climate fluctuation by latest global warming back.

  • PDF