Browse > Article
http://dx.doi.org/10.14191/Atmos.2021.31.4.445

Effects of Meteorological Conditions on Cloud and Snowfall Simulations in the Yeongdong Region: A Case Study Based on Ideal Experiments  

Kim, Yoo-Jun (High Impact Weather Research Department, National Institute of Meteorological Sciences)
Ahn, Bo-Yeong (High Impact Weather Research Department, National Institute of Meteorological Sciences)
Kim, Baek-Jo (High Impact Weather Research Department, National Institute of Meteorological Sciences)
Kim, Seungbum (High Impact Weather Research Department, National Institute of Meteorological Sciences)
Publication Information
Atmosphere / v.31, no.4, 2021 , pp. 445-459 More about this Journal
Abstract
This study uses a cloud-resolving storm simulator (CReSS) to understand the individual effect of determinant meteorological factors on snowfall characteristics in the Yeongdong region based on the rawinsonde soundings for two snowfall cases that occurred on 23 February (Episode 1) and 13 December (Episode 2) 2016; one has a single-layered cloud and the other has two-layered cloud structure. The observed cloud and precipitation (snow crystal) features were well represented by a CReSS model. The first ideal experiment with a decrease in low-level temperature for Episode 1 indicates that total precipitation amount was decreased by 19% (26~27% in graupel and 53~67% in snow) compared with the control experiment. In the ideal experiment that the upper-level wind direction was changed from westerly to easterly, although total precipitation was decreased for Episode 1, precipitation was intensified over the southwestern side (specifically in terrain experiment) of the sounding point (128.855°E, 37.805°N). In contrast, the precipitation for Episode 2 was increased by 2.3 times greater than the control experiment under terrain condition. The experimental results imply that the low-level temperature and upper-level dynamics could change the location and characteristics of precipitation in the Yeongdong region. However, the difference in precipitation between the single-layered experiment and control (two-layered) experiment for Episode 2 was negligible to attribute it to the effect of upper-level cloud. The current results could be used for the development of guidance of snowfall forecast in this region.
Keywords
Cloud-resolving storm simulator; Yeongdong; rawinsonde; ideal experiment;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Seo, W.-S., S.-H. Eun, B.-G. Kim, A.-R. Ko, D.-K. Seong, G.-M. Lee, H.-R. Jeon, S.-O. Han, and Y.-S. Park, 2015: Study on characteristics of snowfall and snow crystal habits in the ESSAY (Experiment on Snow Storms At Yeongdong) campaign in 2014. Atmosphere, 25, 261-270, doi:10.14191/Atmos.2015.25.2.261 (in Korean with English abstract).   DOI
2 Tsuboki, K., and A. Sakakibara, 2001: CReSS user's guide 2nd edition, 212 pp.
3 Tsuboki, K., and A. Sakakibara, 2007: Numerical prediction of high-impact weather systems. The 17th International Hydrological Program (IHP) Training Course, Nagoya, Japan, 273 pp.
4 Schneebeli, M., N. Dawes, M. Lehning, and A. Berne, 2013: High-resolution vertical profiles of X-band polarimetric radar observables during snowfall in the Swiss Alps. J. Appl. Meteor. Climatol., 52, 378-394, doi:10.1175/JAMC-D-12-015.1.   DOI
5 Lee, J. G., S.-D. Kim, and Y. J. Kim, 2011: A trajectory study on the heavy snowfall phenomenon in Yeongdong region of Korea. Asia-Pac. J. Atmos. Sci., 47, 45-62, doi:10.1007/s13143-011-1004-9.   DOI
6 Gehring, J., A. Oertel, E. Vignon, N. Jullien, N. Besic, and A. Berne, 2020: Microphysics and dynamics of snowfall associated with a warm conveyor belt over Korea. Atmos. Chem. Phys., 20, 7373-7392, doi:10.5194/acp20-7373-2020.   DOI
7 Houze, Jr., R. A., and S. Medina, 2005: Turbulence as a mechanism for orographic precipitation enhancement. J. Atmos. Sci., 62, 3599-3623.   DOI
8 Jung, S.-H., E.-S. Im, and S.-O. Han, 2012: The effect of topography and sea surface temperature on heavy snowfall in the Yeongdong region: A case study with high resolution WRF simulation. Asia-Pac. J. Atmos. Sci., 48, 259-273, doi:10.1007/s13143-012-0026-2.   DOI
9 Kim, Y.-J., 2018: Characteristics of cold clouds and snow crystal habits with the different meteorological conditions in the Yeongdong region. Ph. D. Thesis, Gangneung-Wonju National University, 35 pp (in Korean with English abstract).
10 Ko, A.-R., B.-G. Kim, S.-H. Eun, Y.-S. Park, and B.-C. Choi, 2016: Analysis of the relationship of water vapor with precipitation for the winter ESSAY (Experiment on Snow Storms At Yeongdong) period. Atmosphere, 26, 19-33, doi:10.14191/Atmos.2016.26.1.019 (in Korean with English abstract).   DOI
11 Lee, J.-E., S.-H. Jung, H.-M. Park, S. Kwon, P.-L. Lin, and G. W. Lee, 2015: Classification of precipitation types using fall velocity-diameter relationships from 2Dvideo distrometer measurements. Adv. Atmos. Sci., 32, 1277-1290, doi:10.1007/s00376-015-4234-4.   DOI
12 Ahn, J.-B., J.-H. Oh, and E.-H. Cho, 1998: A mesoscale atmosphere/ocean coupled model experiment for a heavy snowfall event in Korean peninsula. J. Korean Meteor. Soc., 34, 652-663 (in Korean with English abstract).
13 Tsai, C.-L., K. Kim, Y.-C. Liou, G. Lee, and C.-K. Yu, 2018: Impacts of topography on airflow and precipitation in the Pyeongchang area seen from multipledoppler radar observations. Mon. Wea. Rev., 146, 3401-3424, doi:10.1175/MWR-D-17-0394.1.   DOI
14 Lee, J. G., and Y. J. Kim, 2008: A numerical case study examining the orographic effect of the Taebaek mountains on snowfall distribution over the Yeongdong Area. Atmosphere, 18, 367-386 (in Korean with English abstract).
15 Lee, K.-O., S. Shimizu, M. Maki, C.-H. You, H. Uyeda, and D.-I. Lee, 2010: Enhancement mechanism of the 30 June 2006 precipitation system observed over the northwestern slope of Mt. Halla, Jeju Island, Korea. Atmos. Res., 97, 343-358, doi:10.1016/j.atmosres.2010.04.008.   DOI
16 Lin, Y., L. J. Donner, and B. A. Colle, 2011: Parameterization of riming intensity and its impact on ice fall speed using ARM data. Mon. Wea. Rev., 139, 1036-1047, doi:10.1175/2010MWR3299.1.   DOI
17 Molthan, A. L., W. A. Petersen, S. W. Nesbitt, and D. Hudak, 2010: Evaluating the snow crystal size distribution and density assumptions within a single-moment microphysics scheme. Mon. Wea. Rev., 138, 4254-4267, doi:10.1175/2010MWR3485.1.   DOI
18 Medina, S., and R. A. Houze Jr., 2015: Small-scale precipitation elements in midlatitude cyclones crossing the California Sierra Nevada. Mon. Wea. Rev., 143, 2842-2870, doi:10.1175/MWR-D-14-00124.1.   DOI
19 Tsuboki, K., and A. Sakakibara, 2002: Large-scale parallel computing of cloud resolving storm simulator. Proc. 4th International Symposium on High Performance Computing, Kansai Science City, Japan, 243-259, doi:10.1007/3-540-47847-7_21.   DOI
20 Murakami, M., 1990: Numerical modeling of dynamical and microphysical evolution of an isolated convective cloud - The 19 July 1981 CCOPE Cloud. J. Meteor. Soc. Jpn., 68, 107-128.   DOI
21 Cooper, S. J., N. B. Wood, and T. S. L'Ecuyer, 2017: A variational technique to estimate snowfall rate from coincident radar, snowflake, and fall-speed observations. Atmos. Meas. Tech., 10, 2557-2571, doi:10.5194/amt-10-2557-2017.   DOI
22 Kim, S.-H., D.-H. Ko, D.-K. Seong, S.-H. Eun, B.-G. Kim, B.-J. Kim, C.-G. Park, and J.-W. Cha, 2019: Quantitative analysis of snow particles using a multi-angle snowflake camera in the Yeongdong region. Atmosphere, 29, 311-324, doi:10.14191/Atmos.2019.29.3.311 (in Korean with English abstract).   DOI
23 Zerr, R. J., 1997: Freezing rain: An observational and theoretical study. J. Appl. Meteor. Climatol., 36, 1647-1661.   DOI
24 Grazioli, J., G. Lloyd, L. Panziera, C. R. Hoyle, P. J. Connolly, J. Henneberger, and A. Berne, 2015: Polarimetric radar and in situ observations of riming and snowfall microphysics during CLACE 2014. Atmos. Chem. Phys., 15, 13787-13802, doi:10.5194/acp-15-13787-2015.   DOI
25 Harimaya, T., and Y. Nakai, 1999: Riming growth process contributing to the formation of snowfall in orographic areas of Japan facing the Japan Sea. J. Meteorol. Soc. Jpn., 77, 101-115.   DOI
26 Jeoung, H., G. Liu, K. Kim, G. Lee, and E.-K. Seo, 2020: Microphysical properties of three types of snow clouds: implication for satellite snowfall retrievals. Atmos. Chem. Phys., 20, 14491-14507, doi:10.5194/acp-20-14491-2020.   DOI
27 Jung, S.-P., C. Lee, J.-H. Kim, H. J. Yang, J. H. Yun, H. J. Ko, S.-E. Hong, and S.-B. Kim, 2020: Thermodynamic characteristics of snowfall clouds using dropsonde data during ICE-POP 2018. Atmosphere, 30, 31-46, doi:10.14191/Atmos.2020.30.1.031 (in Korean with English abstract).   DOI
28 Kim, Y.-J., S.-R. In, H.-M. Kim, J.-H. Lee, K. R. Kim, S. Kim, and B.-G. Kim, 2021: Sensitivity of snowfall characteristics to meteorological conditions in the Yeongdong region of Korea. Adv. Atmos. Sci., 38, 413-429, doi:10.1007/s00376-020-0157-9.   DOI
29 Im, E.-S., S.-R. In, and S.-O. Han, 2013: Numerical simulation of the heavy rainfall caused by a convection band over Korea: a case study on the comparison of WRF and CReSS. Nat. Hazards, 69, 1681-1695, doi:10.1007/s11069-013-0779-7.   DOI
30 Kim, Y.-J., B.-G. Kim, J.-K. Shim, and B.-C. Choi, 2018: Observation and numerical simulation of cold clouds and snow particles in the Yeongdong region. AsiaPac. J. Atmos. Sci., 54, 499-510.   DOI
31 Pinsky, M. B., and A. P. Khain, 1998: Some effects of cloud turbulence on water-ice and ice-ice collisions. Atmos. Res., 47, 69-86.   DOI
32 Murakami, M., T. L. Clark, and W. D. Hall, 1994: Numerical simulations of convective snow clouds over the Sea of Japan; Two-dimensional simulations of mixed layer development and convective snow cloud formation. J. Meteor. Soc. Jpn., 72, 43-62.   DOI
33 Oue, M., M. Galletti, J. Verlinde, A. Ryzhkov, and Y. Lu, 2016: Use of X-band differential reflectivity measurements to study shallow arctic mixed-phase clouds. J. Appl. Meteor. Climatol., 55, 403-424, doi:10.1175/JAMC-D-15-0168.1.   DOI