• Title/Summary/Keyword: Meteorological Prediction Data

Search Result 612, Processing Time 0.028 seconds

Numerical Study on the Impact of Meteorological Input Data on Air Quality Modeling on High Ozone Episode at Coastal Region (기상 입력 자료가 연안지역 고농도 오존 수치 모의에 미치는 영향)

  • Jeon, Won-Bae;Lee, Hwa-Woon;Lee, Soon-Hwan;Choi, Hyun-Jung;Kim, Dong-Hyuk;Park, Soon-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.1
    • /
    • pp.30-40
    • /
    • 2011
  • Numerical simulations were carried out to investigate the impact of SST spatial distribution on the result of air quality modeling. Eulerian photochemical dispersion model CAMx (Comprehensive Air quality Model with eXtensions, version 4.50) was applied in this study and meteorological fields were prepared by RAMS (Regional Atmospheric Modeling System). Three different meteorological fields, due to different SST spatial distributions were used for air quality modeling to assess the sensitivity of CAMx modeling to the different meteorological input data. The horizontal distributions of surface ozone concentrations were analyzed and compared. In each case, the simulated ozone concentrations were different due to the discrepancies of horizontal SST distributions. The discrepancies of land-sea breeze velocity caused the difference of daytime and nighttime ozone concentrations. The result of statistic analysis also showed differences for each case. Case NG, which used meteorological fields with high resolution SST data was most successfully estimated correlation coefficient, root mean squared error and index of agreement value for ground level ozone concentration. The prediction accuracy was also improved clearly for case NG. In conclusion, the results suggest that SST spatial distribution plays an important role in the results of air quality modeling on high ozone episode at coastal region.

A Method for the Discrimination of Precipitation Type Using Thickness and Improved Matsuo's Scheme over South Korea (층후와 개선된 Matsuo 기준을 이용한 한반도 강수형태 판별법)

  • Lee, Sang-Min;Han, Sang-Un;Won, Hye Young;Ha, Jong-Chul;Lee, Yong Hee;Lee, Jung-Hwan;Park, Jong-Chun
    • Atmosphere
    • /
    • v.24 no.2
    • /
    • pp.151-158
    • /
    • 2014
  • This study investigated a method for the discrimination of precipitation type using thickness of geopotential height at 1000~850 hPa and improved Matsuo's scheme over South Korea using 7 upper-level observations data during winter time from 2003 to 2008. With this research, it was suggested that thickness between snow and rain should range from 1281 to 1297 gpm at 1000~850 hPa. This threshold was suitable for determining precipitation type such as snow, sleet and rain and it was verified by investigation at 7 upper-level observation and 10 surface observation data for 3 years (2009~2011). In addition, precipitation types were separated properly by Matsuo's scheme and its improved one, which is a fuction of surface air temperature and relative humidity, when they lie in mixed sectors. Precipitation types in the mixed sector were subdivided into 5 sectors (rain, rain and snow, snow and rain, snow, and snow cover). We also present the decision table for monitoring and predicting precipitation types using model output of Korea Local Analysis and Prediction System (KLAPS) and observation data.

Optimization of Mesoscale Atmospheric Motion Vector Algorithm Using Geostationary Meteorological Satellite Data (정지기상위성자료를 이용한 중규모 바람장 산출 알고리즘 최적화)

  • Kim, Somyoung;Park, Jeong-Hyun;Ou, Mi-Lim;Cho, Heeje;Sohn, Eun-Ha
    • Atmosphere
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2012
  • The Atmospheric motion vectors (AMVs) derived using infrared (IR) channel imagery of geostationary satellites have been utilized widely for real-time weather analysis and data assimilation into global numerical prediction model. As the horizontal resolution of sensors on-board satellites gets higher, it becomes possible to identify atmospheric motions induced by convective clouds ($meso-{\beta}$ and $meso-{\gamma}$ scales). The National Institute of Meteorological Research (NIMR) developed the high resolution visible (HRV) AMV algorithm to detect mesoscale atmospheric motions including ageostrophic flows. To retrieve atmospheric motions smaller than $meso-{\beta}$ scale effectively, the target size is reduced and the visible channel imagery of geostationary satellite with 1 km resolution is used. For the accurate AMVs, optimal conditions are decided by investigating sensitivity of algorithm to target selection and correction method of height assignment. The results show that the optimal conditions are target size of 32 km ${\times}$ 32 km, the grid interval as same as target size, and the optimal target selection method. The HRV AMVs derived with these conditions depict more effectively tropical cyclone OMAIS than IR AMVs and the mean speed of HRV AMVs in OMAIS is slightly faster than that of IR AMVs. Optimized mesoscale AMVs are derived for 6 months (Feb. 2010-Jun. 2010) and validated with radiosonde observations, which indicates NIMR's HRV AMV algorithm can retrieve successfully mesoscale atmospheric motions.

Prediction of the number of Tropical Cyclones over Western North Pacific in TC season (여름철 북서태평양 태풍발생 예측을 위한 통계적 모형 개발)

  • Sohn, Keon-Tae;Hong, Chang-Kon;Kwon, H.-Joe;Park, Jung-Kyu
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.9-15
    • /
    • 2002
  • This paper presents the seasonal forecasting of the occurrence of tropical cyclone (TC) over Western North Pacific (WNP) using the generalized linear model (GLM) and dynamic linear model (DLM) based on 51-year-data (1951-2001) in TC season (June to November). The numbers of TC and TY are predictands and 16 indices (the E1 Nino/Southern Oscillation, the synoptic factors over East asia and WNP) are considered as potential predictors. With 30-year moving windowing, the estimation and prediction of TC and TY are performed using GLM. If GLM forecasts have some systematic error like a bias, DLM is applied to remove the systematic error in order to improve the accuracy of prediction.

  • PDF

Wind Speed Prediction in Complex Terrain Using a Commercial CFD Code (상용 CFD 프로그램을 이용한 복잡지형에서의 풍속 예측)

  • Woo, Jae-Kyoon;Kim, Hyeon-Gi;Paek, In-Su;Yoo, Neung-Soo;Nam, Yoon-Su
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.6
    • /
    • pp.8-22
    • /
    • 2011
  • Investigations on modeling methods of a CFD wind resource prediction program, WindSim for a ccurate predictions of wind speeds were performed with the field measurements. Meteorological Masts having heights of 40m and 50m were installed at two different sites in complex terrain. The wind speeds and direction were monitored from sensors installed on the masts and recorded for one year. Modeling parameters of WindSim input variables for accurate predictions of wind speeds were investigated by performing cross predictions of wind speeds at the masts using the measured data. Four parameters that most affect the wind speed prediction in WindSim including the size of a topographical map, cell sizes in x and y direction, height distribution factors, and the roughness lengths were studied to find out more suitable input parameters for better wind speed predictions. The parameters were then applied to WindSim to predict the wind speed of another location in complex terrain in Korea for validation. The predicted annual wind speeds were compared with the averaged measured data for one year from meteorological masts installed for this study, and the errors were within 6.9%. The results of the proposed practical study are believed to be very useful to give guidelines to wind engineers for more accurate prediction results and time-saving in predicting wind speed of complex terrain that will be used to predict annual energy production of a virtual wind farm in complex terrain.

A Generation and Accuracy Evaluation of Common Metadata Prediction Model Using Public Bicycle Data and Imputation Method

  • Kim, Jong-Chan;Jung, Se-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.287-296
    • /
    • 2022
  • Today, air pollution is becoming a severe issue worldwide and various policies are being implemented to solve environmental pollution. In major cities, public bicycles are installed and operated to reduce pollution and solve transportation problems, and operational information is collected in real time. However, research using public bicycle operation information data has not been processed. This study uses the daily weather data of Korea Meteorological Agency and real-time air pollution data of Korea Environment Corporation to predict the amount of daily rental bicycles. Cross- validation, principal component analysis and multiple regression analysis were used to determine the independent variables of the predictive model. Then, the study selected the elements that satisfy the significance level, constructed a model, predicted the amount of daily rental bicycles, and measured the accuracy.

Application of Numerical Weather Prediction Data to Estimate Infection Risk of Bacterial Grain Rot of Rice in Korea

  • Kim, Hyo-suk;Do, Ki Seok;Park, Joo Hyeon;Kang, Wee Soo;Lee, Yong Hwan;Park, Eun Woo
    • The Plant Pathology Journal
    • /
    • v.36 no.1
    • /
    • pp.54-66
    • /
    • 2020
  • This study was conducted to evaluate usefulness of numerical weather prediction data generated by the Unified Model (UM) for plant disease forecast. Using the UM06- and UM18-predicted weather data, which were released at 0600 and 1800 Universal Time Coordinated (UTC), respectively, by the Korea Meteorological Administration (KMA), disease forecast on bacterial grain rot (BGR) of rice was examined as compared with the model output based on the automated weather stations (AWS)-observed weather data. We analyzed performance of BGRcast based on the UM-predicted and the AWS-observed daily minimum temperature and average relative humidity in 2014 and 2015 from 29 locations representing major rice growing areas in Korea using regression analysis and two-way contingency table analysis. Temporal changes in weather conduciveness at two locations in 2014 were also analyzed with regard to daily weather conduciveness (Ci) and the 20-day and 7-day moving averages of Ci for the inoculum build-up phase (Cinc) prior to the panicle emergence of rice plants and the infection phase (Cinf) during the heading stage of rice plants, respectively. Based on Cinc and Cinf, we were able to obtain the same disease warnings at all locations regardless of the sources of weather data. In conclusion, the numerical weather prediction data from KMA could be reliable to apply as input data for plant disease forecast models. Weather prediction data would facilitate applications of weather-driven disease models for better disease management. Crop growers would have better options for disease control including both protective and curative measures when weather prediction data are used for disease warning.

Verification of the Global Numerical Weather Prediction Using SYNOP Surface Observation Data (SYNOP 지상관측자료를 활용한 수치모델 전구 예측성 검증)

  • Lee, Eun-Hee;Choi, In-Jin;Kim, Ki-Byung;Kang, Jeon-Ho;Lee, Juwon;Lee, Eunjeong;Seol, Kyung-Hee
    • Atmosphere
    • /
    • v.27 no.2
    • /
    • pp.235-249
    • /
    • 2017
  • This paper describes methodology verifying near-surface predictability of numerical weather prediction models against the surface synoptic weather station network (SYNOP) observation. As verification variables, temperature, wind, humidity-related variables, total cloud cover, and surface pressure are included in this tool. Quality controlled SYNOP observation through the pre-processing for data assimilation is used. To consider the difference of topographic height between observation and model grid points, vertical inter/extrapolation is applied for temperature, humidity, and surface pressure verification. This verification algorithm is applied for verifying medium-range forecasts by a global forecasting model developed by Korea Institute of Atmospheric Prediction Systems to measure the near-surface predictability of the model and to evaluate the capability of the developed verification tool. It is found that the verification of near-surface prediction against SYNOP observation shows consistency with verification of upper atmosphere against global radiosonde observation, suggesting reliability of those data and demonstrating importance of verification against in-situ measurement as well. Although verifying modeled total cloud cover with observation might have limitation due to the different definition between the model and observation, it is also capable to diagnose the relative bias of model predictability such as a regional reliability and diurnal evolution of the bias.

A Study on the Wind Data Analysis and Wind Speed Forecasting in Jeju Area (제주지역 바람자료 분석 및 풍속 예측에 관한 연구)

  • Park, Yun-Ho;Kim, Kyung-Bo;Her, Soo-Young;Lee, Young-Mi;Huh, Jong-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.6
    • /
    • pp.66-72
    • /
    • 2010
  • In this study, we analyzed the characteristics of wind speed and wind direction at different locations in Jeju area using past 10 years observed data and used them in our wind power forecasting model. Generally the strongest hourly wind speeds were observed during daytime(13KST~15KST) whilst the strongest monthly wind speeds were measured during January and February. The analysis with regards to the available wind speeds for power generation gave percentages of 83%, 67%, 65% and 59% of wind speeds over 4m/s for the locations Gosan, Sungsan, Jeju site and Seogwipo site, respectively. Consequently the most favorable periods for power generation in Jeju area are in the winter season and generally during daytime. The predicted wind speed from the forecast model was in average lower(0.7m/s) than the observed wind speed and the correlation coefficient was decreasing with longer prediction times(0.84 for 1h, 0.77 for 12h, 0.72 for 24h and 0.67 for 48h). For the 12hour prediction horizon prediction errors were about 22~23%, increased gradually up to 25~29% for 48 hours predictions.

Effects of Resolution, Cumulus Parameterization Scheme, and Probability Forecasting on Precipitation Forecasts in a High-Resolution Limited-Area Ensemble Prediction System

  • On, Nuri;Kim, Hyun Mee;Kim, SeHyun
    • Asia-Pacific Journal of Atmospheric Sciences
    • /
    • v.54 no.4
    • /
    • pp.623-637
    • /
    • 2018
  • This study investigates the effects of horizontal resolution, cumulus parameterization scheme (CPS), and probability forecasting on precipitation forecasts over the Korean Peninsula from 00 UTC 15 August to 12 UTC 14 September 2013, using the limited-area ensemble prediction system (LEPS) of the Korea Meteorological Administration. To investigate the effect of resolution, the control members of the LEPS with 1.5- and 3-km resolution were compared. Two 3-km experiments with and without the CPS were conducted for the control member, because a 3-km resolution lies within the gray zone. For probability forecasting, 12 ensemble members with 3-km resolution were run using the LEPS. The forecast performance was evaluated for both the whole study period and precipitation cases categorized by synoptic forcing. The performance of precipitation forecasts using the 1.5-km resolution was better than that using the 3-km resolution for both the total period and individual cases. The result of the 3-km resolution experiment with the CPS did not differ significantly from that without it. The 3-km ensemble mean and probability matching (PM) performed better than the 3-km control member, regardless of the use of the CPS. The PM complemented the defect of the ensemble mean, which better predicts precipitation regions but underestimates precipitation amount by averaging ensembles, compared to the control member. Further, both the 3-km ensemble mean and PM outperformed the 1.5-km control member, which implies that the lower performance of the 3-km control member compared to the 1.5-km control member was complemented by probability forecasting.