Browse > Article
http://dx.doi.org/10.14191/Atmos.2012.22.1.001

Optimization of Mesoscale Atmospheric Motion Vector Algorithm Using Geostationary Meteorological Satellite Data  

Kim, Somyoung (Global Environment System Research Lab., National Institute of Meteorological Research)
Park, Jeong-Hyun (School of Earth and Environmental Sciences, Seoul National University)
Ou, Mi-Lim (Global Environment System Research Lab., National Institute of Meteorological Research)
Cho, Heeje (School of Earth and Environmental Sciences, Seoul National University)
Sohn, Eun-Ha (Satellite Analysis Division, National Meteorological Satellite Center)
Publication Information
Atmosphere / v.22, no.1, 2012 , pp. 1-12 More about this Journal
Abstract
The Atmospheric motion vectors (AMVs) derived using infrared (IR) channel imagery of geostationary satellites have been utilized widely for real-time weather analysis and data assimilation into global numerical prediction model. As the horizontal resolution of sensors on-board satellites gets higher, it becomes possible to identify atmospheric motions induced by convective clouds ($meso-{\beta}$ and $meso-{\gamma}$ scales). The National Institute of Meteorological Research (NIMR) developed the high resolution visible (HRV) AMV algorithm to detect mesoscale atmospheric motions including ageostrophic flows. To retrieve atmospheric motions smaller than $meso-{\beta}$ scale effectively, the target size is reduced and the visible channel imagery of geostationary satellite with 1 km resolution is used. For the accurate AMVs, optimal conditions are decided by investigating sensitivity of algorithm to target selection and correction method of height assignment. The results show that the optimal conditions are target size of 32 km ${\times}$ 32 km, the grid interval as same as target size, and the optimal target selection method. The HRV AMVs derived with these conditions depict more effectively tropical cyclone OMAIS than IR AMVs and the mean speed of HRV AMVs in OMAIS is slightly faster than that of IR AMVs. Optimized mesoscale AMVs are derived for 6 months (Feb. 2010-Jun. 2010) and validated with radiosonde observations, which indicates NIMR's HRV AMV algorithm can retrieve successfully mesoscale atmospheric motions.
Keywords
Mesoscale atmospheric motion vector; target size; grid interval; target selection method; low level correction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bedka, K. M. and J. R. Mecikalski, 2005: Application of satellite-derived atmospheric motion vectors for estimating mesoscale flows. Appl. Meteor., 44, 1761-1772.   DOI   ScienceOn
2 Borde, R., G. Dew, A. De Smet, and J. B. Gustaffson, 2010: Improvements to EUMETSAT AMVs. Proc. 10th Int. Winds Workshop, Tokyo, Japan, EUM P.56, ISSN 1023-0416.
3 Carranza M., De Smet, A., Gustafsson, J., 2010: Atmospheric motion vectors derived from MSG rapid scanning service data at EUMETSAT. Proc. 10th Int. Winds Workshop, Tokyo, Japan, EUM P.56, ISSN 1023-0416.
4 EUMETSAT, 2009: MSG Meteorological products extraction facility algorithm specification documents., v5.
5 Forsythe, M. and Saunders, R., 2008: AMV monitoring: results from the 3rd NWP SAF analysis, Proc. 9th Int. Winds Workshop, Annapolis, Maryland, USA, EUM 51, ISSN 1023-0416.
6 Fritz, S. and J. S. Winston, 1962: Synoptic use of radiation measurements from satellite TIROS-II. Mon. Wea. Rev., 90, 1-9   DOI
7 Garca Pereda, J., 2010: New developments in the high resolution winds product (HRW), at the satellite application facility on support to nowcasting & very short range forecasting (NWCSAF). Proc. 10th Int. Winds Workshop, Tokyo, Japan, EUM P.56, ISSN 1023-0416.
8 Genkova, I., R. Borde, J. Schmetz, C. Velden, K. Holmlund, M. Forsythe, J. Daniels, N. Bormann, and P. Bauer, 2010: Global Atmospheric Motion Vector intercomparison study. Proc. 10th Int. Winds Workshop, Tokyo, Japan, EUM P.56, ISSN 1023-0416.
9 Hasler, A. F., Skillman, W. C., Shenk, W. E., and Steranka, J., 1979: In Situ Aircraft Verification of the Quality of Satellite Cloud Winds over Oceanic Regions. J. appl. Met., 18, 1481-1489   DOI
10 Hillger, D. W., and T. H. Vonder Haar, 1988: Estimating noise levels of remotely sensed measurements from satellites using spatial structure analysis. J. Atmos. Oceanic Technol., 5, 206-214.   DOI
11 Holmlund, K., 1998: The utilization of statistical propertied of satellite-derived atmospheric motion vectors to derive quality indicators. Wea. Forecasting, 13, 1093-1104.   DOI   ScienceOn
12 Jedlovec, G. J., and R. J. Atkinson, 1996: Quality and control of water vapor winds. Proc. 8th Conf. on Satellite Meteorology and Oceanography, Atlanta, GA, Amer. Meteor. Soc., 5-8.
13 Le Marshall, J., N. Pescod, A. Khaw, and G. Allen, 1993: The real-time generation and application of cloud-drift winds in the Australian region. Aust. Met. Mag., 42, 89-103
14 Merrill, R. T., W. P. Menzel, W. Baker, J. Lynch, and E. Legg, 1991: A report on the recent demonstration of NOAA's upgraded capability to derive satellite cloud motion winds. Bull. Amer. Meteor. Soc., 72, 372-376.
15 Negri, R. G., Machado, L. A. T., and Borde R., 2010: A tool to detect inner cloud top dynamics of deep convective system. Proc. 10th Int. Winds Workshop, Tokyo, Japan, EUM P.56, ISSN 1023-0416.
16 Nieman, S. J., W. P. Menzel, C. M. Hayden, D. Gray, S.Warzong, C. S. Velden, and J. Daniels, 1997: Fully automated cloud-drift winds in NESDIS operations. Bull. Amer. Meteor. Soc., 78, 1121-1133.   DOI   ScienceOn
17 Saunders R. W., M. Matricardi, and P. Brunel, 1999: An improved fast radiative transfer model for assimilation of satellite radiance observations. Quart. J. Royal Meteorol. Soc., 125, 1407-1425.   DOI
18 NWCSAF, 2011: Product User Manual for "High Resolution Winds" (HRW-PGE09 v3.1) (available at http://www.nwcsaf.org/scidocs/Documentation/SAF-NWCCDOP-INM-SCI-PUM-09_v3.1.pdf).
19 Ottenbacher, A., M. Tomassini, K. Holmlund, and J. Schmetz, 1997: Low-level cloud motion winds from Meteosat high-resolution visible imagery. Wea. Forecasting, 12, 175-184.   DOI   ScienceOn
20 Oyama, R., 2010: Recent upgrades of and activities for atmospheric motion vectors at JMA/MSC. Proc. 10th Int. Winds Workshop, Tokyo, Japan, EUM P.56, ISSN 1023-0416.
21 Velden, C. S., J. Daniels, D. Stettner, D. Santek, J. Key, J. Dunion, K. Holmlund, G. Deniel, W. Bresky, and P. Menzel, 2005: Recent innovations in deriving tropospheric winds from meteorological satellites. Bull. Amer. Meteor. Soc., 86, 205-223.   DOI   ScienceOn
22 Yamashita, K., 2010: Observing system experiments of MTSAT-2 rapid scan atmospheric motion vector for TPARC2008 using the JMA operational NWP system. Proc. 10th Int. Winds Workshop, Tokyo, Japan, EUM P.56, ISSN 1023-0416.