• Title/Summary/Keyword: Meteorological Network

Search Result 288, Processing Time 0.025 seconds

Current Status and Future Direction of the NIMS/KMA Argo Program (국립기상과학원 Argo 사업의 현황 및 추진 방향)

  • Baek-Jo Kim;Hyeong-Jun Jo;KiRyong Kang;Chul-Kyu Lee
    • Atmosphere
    • /
    • v.33 no.5
    • /
    • pp.561-570
    • /
    • 2023
  • In order to improve the predictability of marine high-impacts weather such as typhoon and high waves, the marine observation network is an essential because it could be rapidly changed by strong air-sea interaction. In this regard, the National Institute of Meteorological Sciences, Korea Meteorological Administration (NIMS/KMA) has promoted the Argo float observation program since 2001 to participate in the International Argo program. In this study, current status and future direction of the NIMS/KMA Argo program are presented through the internal meeting and external expert forum. To date, a total of 264 Argo floats have been deployed into the offshore around the Korean Peninsula and the Northwestern Pacific Ocean. The real-time and delayed modes quality control (QC) system of Argo data was developed, and an official regional data assembling center (call-sign 'KM') was run. In 2002, the Argo homepage was established for the systematic management and dissemination of Argo data for domestic and international users. The future goal of the NIMS/KMA Argo program is to improve response to the marine high-impacts weather through a marine environment monitoring and observing system. The promotion strategy for this is divided into four areas: strengthening policy communication, developing observation strategies, promoting utilization research, and activating international cooperation.

The System Design for Mobile Meteorological Information Services (모바일 기상정보 서비스를 위한 시스템 설계)

  • Choi, Jin-Oh
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.245-247
    • /
    • 2011
  • For the mobile meteorological services, sensed data should be gathered at a server from various clients like as USN, mobile phone or public traffic vehicle by wireless network. The gathered data have huge volume and increase continuously, a special query method and data structure are considered. This paper studies on all query type and processing steps for the mobile meteorological services and proposes effective system structure.

  • PDF

Study on Optimum Meteorological Information System of Korea

  • Kim, Eui-Hong;Lee, Wan-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.2 no.1
    • /
    • pp.49-54
    • /
    • 1986
  • This study has been intended to design an optimum meteorological information system appropriate for Korea as a part of 5 year development plan. The 5 year plan was that to set up new direction in order to modernize meteorological data acquisition, processing and information distribution. The detailed research has been led to presentation of optimum meteorological information system of Korea eventually, selecting the computerization of communication as the primary object of modernization. In the study, research concerning effective equipment configuration, data communications internal as wall as external, and the related implementations has been carried out with the approach of system component consideration under system application design. As tile results of the study, integrated network of meterorological data communication was presented including earth quakes, radar, aerologic, marine weather observations and so on.

Tropospheric Anomaly Detection in Multi-Reference Stations Environment during Localized Atmospheric Conditions-(2) : Analytic Results of Anomaly Detection Algorithm

  • Yoo, Yun-Ja
    • Journal of Navigation and Port Research
    • /
    • v.40 no.5
    • /
    • pp.271-278
    • /
    • 2016
  • Localized atmospheric conditions between multi-reference stations can bring the tropospheric delay irregularity that becomes an error terms affecting positioning accuracy in network RTK environment. Imbalanced network error can affect the network solutions and it can corrupt the entire network solution and degrade the correction accuracy. If an anomaly could be detected before the correction message was generated, it is possible to eliminate the anomalous satellite that can cause degradation of the network solution during the tropospheric delay anomaly. An atmospheric grid that consists of four meteorological stations was used to detect an inhomogeneous weather conditions and tropospheric anomaly applied AWSs (automatic weather stations) meteorological data. The threshold of anomaly detection algorithm was determined based on the statistical weather data of AWSs for 5 years in an atmospheric grid. From the analytic results of anomaly detection algorithm it showed that the proposed algorithm can detect an anomalous satellite with an anomaly flag generation caused tropospheric delay anomaly during localized atmospheric conditions between stations. It was shown that the different precipitation condition between stations is the main factor affecting tropospheric anomalies.

Forecasting the Sea Surface Temperature in the Tropical Pacific by Neural Network Model (신경망 모델을 이용한 적도 태평양 표층 수온 예측)

  • Chang You-Soon;Lee Da-Un;Seo Jang-Won;Youn Yong-Hoon
    • Journal of the Korean earth science society
    • /
    • v.26 no.3
    • /
    • pp.268-275
    • /
    • 2005
  • One of the nonlinear statistical modelling, neural network method was applied to predict the Sea Surface Temperature Anomalies (SSTA) in the Nino regions, which represent El Nino indices. The data used as inputs in the training step of neural network model were the first seven empirical orthogonal functions in the tropical Pacific $(120^{\circ}\;E,\;20^{\circ}\;S-20^{\circ}\;N)$ obtained from the NCEP/NCAR reanalysis data. The period of 1951 to 1993 was adopted for the training of neural network model, and the period 1994 to 2003 for the forecasting validation. Forecasting results suggested that neural network models were resonable for SSTA forecasting until 9-month lead time. They also predicted greatly the development and decay of strong E1 Nino occurred in 1997-1998 years. Especially, Nino3 region appeared to be the best forecast region, while the forecast skills rapidly decreased since 9-month lead time. However, in the Nino1+2 region where they are relatively low by the influence of local effects, they did not decrease even after 9-month lead time.

Data Mining based Forest Fires Prediction Models using Meteorological Data (기상 데이터를 이용한 데이터 마이닝 기반의 산불 예측 모델)

  • Kim, Sam-Keun;Ahn, Jae-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.521-529
    • /
    • 2020
  • Forest fires are one of the most important environmental risks that have adverse effects on many aspects of life, such as the economy, environment, and health. The early detection, quick prediction, and rapid response of forest fires can play an essential role in saving property and life from forest fire risks. For the rapid discovery of forest fires, there is a method using meteorological data obtained from local sensors installed in each area by the Meteorological Agency. Meteorological conditions (e.g., temperature, wind) influence forest fires. This study evaluated a Data Mining (DM) approach to predict the burned area of forest fires. Five DM models, e.g., Stochastic Gradient Descent (SGD), Support Vector Machines (SVM), Decision Tree (DT), Random Forests (RF), and Deep Neural Network (DNN), and four feature selection setups (using spatial, temporal, and weather attributes), were tested on recent real-world data collected from Gyeonggi-do area over the last five years. As a result of the experiment, a DNN model using only meteorological data showed the best performance. The proposed model was more effective in predicting the burned area of small forest fires, which are more frequent. This knowledge derived from the proposed prediction model is particularly useful for improving firefighting resource management.

Prediction of Daily Maximum SO2 Concentrations Using Artificial Neural Networks in the Urban-industrial Area of Ulsan (인공신경망 모형을 이용한 울산공단지역 일 최고 SO2 농도 예측)

  • Lee, So-Young;Kim, Yoo-Keun;Oh, In-Bo;Kim, Jung-Kyu
    • Journal of Environmental Science International
    • /
    • v.18 no.2
    • /
    • pp.129-139
    • /
    • 2009
  • Development of an artificial neural network model was presented to predict the daily maximum $SO_2$ concentration in the urban-industrial area of Ulsan. The network model was trained during April through September for 2000-2005 using $SO_2$ potential parameters estimated from meteorological and air quality data which are closely related to daily maximum $SO_2$ concentrations. Meteorological data were obtained from regional modeling results, upper air soundings and surface field measurements and were then used to create the $SO_2$ potential parameters such as synoptic conditions, mixing heights, atmospheric stabilities, and surface conditions. In particular, two-stage clustering techniques were used to identify potential index representing major synoptic conditions associated with high $SO_2$ concentration. Two neural network models were developed and tested in different conditions for prediction: the first model was set up to predict daily maximum $SO_2$ at 5 PM on the previous day, and the second was 10 AM for a given forecast day using an additional potential factors related with urban emissions in the early morning. The results showed that the developed models can predict the daily maximum $SO_2$ concentrations with good simulation accuracy of 87% and 96% for the first and second model. respectively, but the limitation of predictive capability was found at a higher or lower concentrations. The increased accuracy for the second model demonstrates that improvements can be made by utilizing more recent air quality data for initialization of the model.

Design of Meteorological Radar Echo Classifier Based on RBFNN Using Radial Velocity (시선속도를 고려한 RBFNN 기반 기상레이더 에코 분류기의 설계)

  • Bae, Jong-Soo;Song, Chan-Seok;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.3
    • /
    • pp.242-247
    • /
    • 2015
  • In this study, we propose the design of Radial Basis Function Neural Network(RBFNN) classifier in order to classify between precipitation and non-precipitation echo. The characteristics of meteorological radar data is analyzed for classifying precipitation and non-precipitation echo. Input variables is selected as DZ, SDZ, VGZ, SPN, DZ_FR, VR by performing pre-processing of UF data based on the characteristics analysis and these are composed of training and test data. Finally, QC data being used in Korea Meteorological Administration is applied to compare with the performance results of proposed classifier.

Minimizing Machine-to-Machine Data losses on the Offshore Moored Buoy with Software Approach (소프트웨어방식을 이용한 근해 정박 부이의 기계간의 데이터손실의 최소화)

  • Young, Tan She;Park, Soo-Hong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.7
    • /
    • pp.1003-1010
    • /
    • 2013
  • In this paper, TCP/IP based Machine-to-Machine (M2M) communication uses CDMA/GSM network for data communication. This communication method is widely used by offshore moored buoy for data transmission back to the system server. Due to weather and signal coverage, the TCP/IP M2M communication often experiences transmission failure and causing data losses in the server. Data losses are undesired especially for meteorological and oceanographic analysis. This paper discusses a software approach to minimize M2M data losses by handling transmission failure and re-attempt which meant to transmit the data for recovery. This implementation was tested for its performance on a meteorological buoy placed offshore.

Correlation Between the “seeing FWHM” of Satellite Optical Observations and Meteorological Data at the OWL-Net Station, Mongolia

  • Bae, Young-Ho;Jo, Jung Hyun;Yim, Hong-Suh;Park, Young-Sik;Park, Sun-Youp;Moon, Hong Kyu;Choi, Young-Jun;Jang, Hyun-Jung;Roh, Dong-Goo;Choi, Jin;Park, Maru;Cho, Sungki;Kim, Myung-Jin;Choi, Eun-Jung;Park, Jang-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.137-146
    • /
    • 2016
  • The correlation between meteorological data collected at the optical wide-field patrol network (OWL-Net) Station No. 1 and the seeing of satellite optical observation data was analyzed. Meteorological data and satellite optical observation data from June 2014 to November 2015 were analyzed. The analyzed meteorological data were the outdoor air temperature, relative humidity, wind speed, and cloud index data, and the analyzed satellite optical observation data were the seeing full-width at half-maximum (FWHM) data. The annual meteorological pattern for Mongolia was analyzed by collecting meteorological data over four seasons, with data collection beginning after the installation and initial set-up of the OWL-Net Station No. 1 in Mongolia. A comparison of the meteorological data and the seeing of the satellite optical observation data showed that the seeing degrades as the wind strength increases and as the cloud cover decreases. This finding is explained by the bias effect, which is caused by the fact that the number of images taken on the less cloudy days was relatively small. The seeing FWHM showed no clear correlation with either temperature or relative humidity.