• Title/Summary/Keyword: Meteorological Effect

Search Result 660, Processing Time 0.034 seconds

An Analysis of Aerosols Impacts on the Vertical Invigoration of Continental Stratiform Clouds (에어로솔의 대륙 층운형 구름 연직발달(Invigoration)에 미치는 영향 분석)

  • Kim, Yoo-Jun;Han, Sang-Ok;Lee, Chulkyu;Lee, Seoung-Soo;Kim, Byung-Gon
    • Atmosphere
    • /
    • v.23 no.3
    • /
    • pp.321-329
    • /
    • 2013
  • This study examines the effect of aerosols on the vertical invigoration of continental stratiform clouds, using a dataset of Atmospheric Radiation Measurement (ARM) Intensive Operational Period (IOP, March 2000) at the Southern Great Plains (SGP) site. To provide further support to our observation-based findings, the weather research and forecasting (WRF) sensitivity simulations with changing cloud condensation nuclei (CCN) concentrations have been carried out for the golden episode over SGP. First, cross correlation between observed aerosol scattering coefficient and cloud liquid water path (LWP) with a 160-minutes lag is the highest of r = 0.83 for the selected episode, which may be attributable to cloud vertical invigoration induced by an increase in aerosol loading. Modeled cloud fractions in a control run are well matched with the observation in the perspective of cloud morphology and lasting period. It is also found through a simple sensitivity with a change in CCN that aerosol invigoration (AIV) effect on stratiform cloud organization is attributable to a change in the cloud microphysics as well as dynamics such as the corresponding modification of cloud number concentrations, drop size, and latent heating rate, etc. This study suggests a possible cloud vertical invigoration even in the continental stratiform clouds due to aerosol enhancement in spite of a limited analysis based on a few observed continental cloud cases.

A change of local meteorological environment according to dam construction of Nakdong-River : I. Meteorological data analysis before and after dam construction (낙동강 수계 중의 댐 건설에 의한 주변의 국지기상환경 변화 : I. 댐 건설 전ㆍ후의 기상변화 분석)

  • 전병일;김일곤;이영미
    • Journal of Environmental Science International
    • /
    • v.11 no.3
    • /
    • pp.161-168
    • /
    • 2002
  • This study was carried out for reading the change of local meteorological environment according to dam construction of Nakdong-river using meteorological data analysis, and modeling. The meteorological data analysised are mean temperature, foggy day, precipittion day and sunshine time. As tile result of analyzing meteorological data of before and after the construction of dam in Andong and Hapchon, some discrepancy were observed by month because the lakes have different effect on the region as wind field. The common phenomenons that are revealed after dam construction are increase of foggy day and decrease of sunshine time.

Spatial Characteristics of Low Meteorological Visibility over Hongkong and Statistical Retrieval from Satellite Data

  • Fei, HUANG;Jun-Ping, QIAN;Zu-Qiang, CUI;Zhi-Hong, ZHENG;Zhi-Jun, WU
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1261-1263
    • /
    • 2003
  • Based on twelve observational stations low meteorological visibility (LMV) data during November 2002 to April 2003, the spatial distribution of LMV over Hongkong area (113.8$^{\circ}$ E-114.4$^{\circ}$ E, 22.1$^{\circ}$ N-22.4$^{\circ}$ N) is studied, using a PCA method. Optical spectrum of NOAA-16 associated with LMV shows that the significant effect factors correlated with LMV in the leading mode are the difference or rate between the visible and near-IR channels and single visible channel. A successful retrieval of LMV is done and a regression equation with a multiple correlation coefficient of 0.67 is obtained.

  • PDF

Analysis of Results and Techniques about Precipitation Enhancement by Aircraft Seeding in Korea (항공기를 이용한 인공증우(설) 기술과 결과분석)

  • Cha, Joo Wan;Jung, Wooseon;Chae, Sanghee;Ko, A-Reum;Ro, Yonghun;Chang, Ki-Ho;Seo, Seongkyu;Ha, Jong-Chul;Park, Dongoh;Hwang, Hyun Jun;Kim, Min Hoo;Kim, Kyung Eak;Ku, Jung Mo
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.481-499
    • /
    • 2019
  • National Institute of Meteorological Sciences has conducted a total 54 cloud seeding experiments with a silver iodide and calcium chloride using aircrafts from 2008 to 2018. The goal of the experiments is to improve the techniques of precipitation enhancement in Korea. The cloud seeding experiments using the silver iodide and calcium chloride were 36 and 18 times, respectively. During the cloud seeding experiments of the silver iodide and calcium chloride, the average values of total cloud amount for two kinds of seeding materials were 9.6 for and 8.1, respectively. The cloud type with the highest occurrence was Nimbostratus (Ns)-Stratus (St) (58%) in the silver iodide cloud seeding experiment. It was Altostratus (As)-Stratocumulus (Sc) (44%) in the calcium chloride cloud seeding experiment. Compared to probability of obtaining cloud seeding effect of the experiments using a leased aircraft, the probability using an atmospheric research aircraft increased from 43% to 63% in the silver iodide cloud seeding experiment and from 29% to 75% in the calcium chloride cloud seeding experiment. However, the increasing tendency was only shown during the one year experiment (2018). To get the meaningful statistical tendency of the cloud seeding effects, it is needed to implement many experiments in several years. Further we have to more clearly understand the characteristics of clouds developing in Korea and implement the cloud seeding experiments under a variety of weather conditions in order to develop the optimized precipitation enhancement technology in Korea.

Effects of Observation Network Density Change on Spatial Distribution of Meteorological Variables: Three-Dimensional Meteorological Observation Project in the Yeongdong Region in 2019 (관측망 밀도 변화가 기상변수의 공간분포에 미치는 영향: 2019 강원영동 입체적 공동관측 캠페인)

  • Kim, Hae-Min;Jeong, Jong-Hyeok;Kim, Hyunuk;Park, Chang-Geun;Kim, Baek-Jo;Kim, Seung-Bum
    • Atmosphere
    • /
    • v.30 no.2
    • /
    • pp.169-181
    • /
    • 2020
  • We conducted a study on the impact of observation station density; this was done in order to enable the accurate estimation of spatial meteorological variables. The purpose of this study is to help operate an efficient observation network by examining distributions of temperature, relative humidity, and wind speed in a test area of a three-dimensional meteorological observation project in the Yeongdong region in 2019. For our analysis, we grouped the observation stations as follows: 41 stations (for Step 4), 34 stations (for Step 3), 17 stations (for Step 2), and 10 stations (for Step 1). Grid values were interpolated using the kriging method. We compared the spatial accuracy of the estimated meteorological grid by using station density. The effect of increased observation network density varied and was dependent on meteorological variables and weather conditions. The temperature is sufficient for the current weather observation network (featuring an average distance about 9.30 km between stations), and the relative humidity is sufficient when the average distance between stations is about 5.04 km. However, it is recommended that all observation networks, with an average distance of approximately 4.59 km between stations, be utilized for monitoring wind speed. In addition, this also enables the operation of an effective observation network through the classification of outliers.

Evaluation of Urban Weather Forecast Using WRF-UCM (Urban Canopy Model) Over Seoul (WRF-UCM (Urban Canopy Model)을 이용한 서울 지역의 도시기상 예보 평가)

  • Byon, Jae-Young;Choi, Young-Jean;Seo, Bum-Geun
    • Atmosphere
    • /
    • v.20 no.1
    • /
    • pp.13-26
    • /
    • 2010
  • The Urban Canopy Model (UCM) implemented in WRF model is applied to improve urban meteorological forecast for fine-scale (about 1-km horizontal grid spacing) simulations over the city of Seoul. The results of the surface air temperature and wind speed predicted by WRF-UCM model is compared with those of the standard WRF model. The 2-m air temperature and wind speed of the standard WRF are found to be lower than observation, while the nocturnal urban canopy temperature from the WRF-UCM is superior to the surface air temperature from the standard WRF. Although urban canopy temperature (TC) is found to be lower at industrial sites, TC in high-intensity residential areas compares better with surface observation than 2-m temperature. 10-m wind speed is overestimated in urban area, while urban canopy wind (UC) is weaker than observation by the drag effect of the building. The coupled WRF-UCM represents the increase of urban heat from urban effects such as anthropogenic heat and buildings, etc. The study indicates that the WRF-UCM contributes for the improvement of urban weather forecast such nocturnal heat island, especially when an accurate urban information dataset is provided.

The effects of meteorological factors on the sales volume of apparel products - Focused on the Fall/Winter season - (기상요인이 의류제품 판매량에 미치는 영향 - F/W 판매데이터(9월~익년 2월)를 근거로 -)

  • Kim, Eun Hie;Hwangbo, Hyunwoo;Chae, Jin Mie
    • The Research Journal of the Costume Culture
    • /
    • v.25 no.2
    • /
    • pp.117-129
    • /
    • 2017
  • The purpose of this study was to investigate meteorological factors' effects on clothing sales based on empirical data from a leading apparel company. The daily sales data were aggregated from "A" company's store records for the Fall/Winter season from 2012 to 2015. Daily weather data corresponding to sales volume data were collected from the Korea Meteorological Administration. The weekend effect and meteorological factors including temperature, wind, humidity, rainfall, fine dust, sea level pressure, and sunshine hours were selected as independent variables to calculate their effects on A company's apparel sales volume. The analysis used a SAS program including correlation analysis, t-test, and multiple-regression analysis. The study results were: First, the weekend effect was the most influential factor affecting sales volume, followed by fine dust and temperature. Second, there were significant differences in the independent variables'effects on sales volume according to the garments' classification. Third, temperature significantly affected outer garments'sales volume, while top garments' sales volume was not influenced significantly. Fourth, humidity, sea level pressure and sunshine affected sales volume partly according to the garments' item. This study can provide proof of significant relationships between meteorological factors and the sales volume of garments, which will serve well to establish better inventory strategies.

Study on Characteristics of Fog in the Coastal Area of Mokpo (목포연안지역의 안개특성에 관한 연구)

  • Kim Do-Yong;Lee Sang-Deug;Kim Ji-Young;Woo Jong-Taek;Oh Jai-Ho
    • Journal of Environmental Science International
    • /
    • v.15 no.7
    • /
    • pp.623-634
    • /
    • 2006
  • In this study, characteristics of fog at Mokpo as the west coastal area of Jeonnam were investigated, using statistical analysis of observed fog and meteorological data. Higher frequency of the fog occurrence at Mokpo was showed in spring(32%) and summer(34%) due to the seasonal high atmospheric pressure. Regional characteristics as radiation cooling, advection of fog and water vapor from surrounding sea and Yeongsan lake, and frontal fog had major effect on the coastal fog at Mokpo on the meteorological conditions of north-west/south wind and calm($0{\sim}2m/s$). Also, as the results of analyzing data of before and after the construction of Yeongsan dam, the frequency of annual mean fog days increased 41 %, specially increased 178% in autumn. The increase of fog days mainly resulted from evaporation during colder seasons and from temperature inversion during warmer seasons over the water surface of Yeongsan lake. The construction of Yeongsan dam had a little effect on the meteorological conditions concerning fog occurrence, because Yeongsan dam which only supplies the water for use do not always carry out outlet of the cold water. In addition, the sea fog at Heuksando located in offshore had not effect on the occurrence of fog at Mokpo.

Analysis of PM10 Reduction Effects with Artificial Rain Enhancement Using Numerical Models (수치모델을 이용한 인공증우에 따른 PM10 저감효과 분석)

  • Lim, Yun-Kyu;Kim, Bu-Yo;Chang, Ki-Ho;Cha, Joo Wan;Lee, Yong Hee
    • Atmosphere
    • /
    • v.32 no.4
    • /
    • pp.341-351
    • /
    • 2022
  • Recently, interest in the possibility of a washout effect using artificial rain enhancement technology to reduce high-concentration fine dust is growing. Therefore, in this study, the reduction rate of PM10 concentration according to the amount of artificial rain enhancement was calculated during Asian Dust event which occurred over the Korean Peninsula on March 29, 2021 using air quality model [i.e., Community Multiscale Air Quality (CMAQ)] combined with the mesoscale model for artificial rain enhancement (i.e., WRF-MMS). According to WRF-MMS, the washout effect lasted 5 hours, and the maximum precipitation rate was calculated to be 1.5 mm hr-1. According the CMAQ results, the PM10 reduction rate was up to 22%, and the affected area was calculated to be 6.4 times greater than that of the artificial rain enhancement area. Even if the maximum amount of precipitation per hour is lowered to 0.8 mm hr-1 (about 50% level), the PM10 reduction rate appears to be up to 16%. In other words, it is believed that this technique can be used as a direct method for reducing high-concentration fine dust even when the artificial rain enhancement effect is weak.

Climate Influences of Galactic Cosmic Rays (GCR): Review and Implications for Research Policy (우주기원의 고에너지 입자가 기후에 미치는 영향: 연구 현황과 정책적 시사점)

  • Kim, Jiyoung;Jang, Kun-Il
    • Atmosphere
    • /
    • v.27 no.4
    • /
    • pp.499-509
    • /
    • 2017
  • Possible links among cosmic ray, cloud, and climate have scientific uncertainties. The reputed topics have been highly controversial during several decades. A link between the atmospheric ionization by galactic cosmic rays (GCR), which is modulated by solar activities, and global cloud cover was firstly proposed in 1997. Some researchers suggested that the GCR can stimulate the formation of cloud condensation nuclei (CCN) in the atmosphere, and then the higher CCN concentrations may lead to an increase of cloud cover, resulting in a cooling of the Earth's climate, and vise versa. The CLOUD (Cosmic leaving outdoor droplets) experiment was designed to study the effect of GCR on the formation of atmospheric aerosols and clouds under precisely controlled laboratory conditions. A state-of-the-art chamber experiment has greatly advanced our scientific understanding of the aerosol formation in early stage and its nucleation processes if the GCR effect is considered or not. Many studies on the climate-GCR (or space weather) connection including the CLOUD experiment have been carried out during the several decades. Although it may not be easy to clarify the physical connection, the recent scientific approaches such as the laboratory experiments or modeling studies give some implications that the research definitively contributed to reduce the scientific uncertainties of natural and anthropogenic aerosol radiative forcing as well as to better understand the formation processes of fine particulate matters as an important parameter of air quality forecast.