Browse > Article
http://dx.doi.org/10.14191/Atmos.2017.27.4.499

Climate Influences of Galactic Cosmic Rays (GCR): Review and Implications for Research Policy  

Kim, Jiyoung (National Meteorological Satellite Center, Korea Meteorological Administration)
Jang, Kun-Il (National Meteorological Satellite Center, Korea Meteorological Administration)
Publication Information
Atmosphere / v.27, no.4, 2017 , pp. 499-509 More about this Journal
Abstract
Possible links among cosmic ray, cloud, and climate have scientific uncertainties. The reputed topics have been highly controversial during several decades. A link between the atmospheric ionization by galactic cosmic rays (GCR), which is modulated by solar activities, and global cloud cover was firstly proposed in 1997. Some researchers suggested that the GCR can stimulate the formation of cloud condensation nuclei (CCN) in the atmosphere, and then the higher CCN concentrations may lead to an increase of cloud cover, resulting in a cooling of the Earth's climate, and vise versa. The CLOUD (Cosmic leaving outdoor droplets) experiment was designed to study the effect of GCR on the formation of atmospheric aerosols and clouds under precisely controlled laboratory conditions. A state-of-the-art chamber experiment has greatly advanced our scientific understanding of the aerosol formation in early stage and its nucleation processes if the GCR effect is considered or not. Many studies on the climate-GCR (or space weather) connection including the CLOUD experiment have been carried out during the several decades. Although it may not be easy to clarify the physical connection, the recent scientific approaches such as the laboratory experiments or modeling studies give some implications that the research definitively contributed to reduce the scientific uncertainties of natural and anthropogenic aerosol radiative forcing as well as to better understand the formation processes of fine particulate matters as an important parameter of air quality forecast.
Keywords
Galactic cosmic rays; aerosol; climate; space weather; policy study;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Forbush, S. E., 1954: World-wide cosmic-ray variations, 1937-1952. J. Geophys. Res., 59, 525-542.   DOI
2 Friis-Christensen, E., and K. Lassen, 1991: Length of the solar cycle: An indicator of solar activity closely associated with climate. Science, 254, 698-700.   DOI
3 Gordon, H., and Coauthors, 2016: Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation. Proc. Natl. Acad. Sci., 113, 12053-12058, doi:10.1073/pnas.1602360113.   DOI
4 Gray, L. J., and Coauthors, 2010: Solar influences on climate. Rev. Geophys., 48, RG4001, doi:10.1029/2009RG000282.   DOI
5 Harrison, R. G., and D. B. Stephenson, 2006: Empirical evidence for a nonlinear effect of galactic cosmic rays on clouds. Proc. Roy. Soc. London. Ser. A, 462, 1221-1233, doi:10.1098/rspa.2005.1628.   DOI
6 Jha, A., 2013: Cosmic ray mystery solved. The Guardian. [Available online at https://www.theguardian.com/science/2013/feb/14/cosmic-ray-mystery-solved.]
7 Svensmark, H., T. Bondo, and J. Svensmark, 2009: Cosmic ray decreases affect atmospheric aerosols and clouds. Geophys. Res. Lett., 36, L15101, doi:10.1029/2009GL038429.   DOI
8 Svensmark, H., M. B. Enghoff, and J. O. P. Pedersen, 2013: Response of cloud condensation nuclei (> 50 nm) to changes in ion-nucleation. Phys. Lett. A, 377, 2343-2347, doi:10.1016/j.physleta.2013.07.004.   DOI
9 Svensmark, J., M. B. Enghoff, N. J. Shaviv, and H. Svensmark, 2016: The response of clouds and aerosols to cosmic ray decreases. J. Geophys. Res., 121, 8152-8181, doi:10.1002/2016JA022689.   DOI
10 Kerminen, V.-M., J. H. Seinfeld, N. M. Donahue, K. S. Carslaw, and J. Abbatt, 2012: The CERN CLOUD Experiment (ACP/AMT Inter-Journal SI). Atmos. Chem. Phys. & Atmos. Meas. Tech. [Available online at http://atmos-chem-phys.net/special_issue264html.]
11 Kernthaler, S. C., R. Toumi, and J. D. Haigh, 1999: Some doubts concerning a link between cosmic ray fluxes and global cloudiness. Geophys. Res. Lett., 26, 863-865.   DOI
12 Kim, J., and Coauthors, 2016: Overview of the Korea Meteorological Administration (KMA)'s space weather service and R&D program. Proc. of the Asia-Oceania Space Weather Alliance Workshop, 98 pp.
13 Enghoff, M. B., J. O. P. Pedersen, U. I. Uggerhoj, S. M. Paling, and H. Svensmark, 2011: Aerosol nucleation induced by a high energy particle beam. Geophys. Res. Lett., 38, L09805, doi:10.1029/2011GL047036.   DOI
14 Tsuda, T., M. Shepherd, and N. Gopalswamy, 2015: Advancing the understanding of the Sun-Earth interaction-the Climate and Weather of the Sun-Earth System (CAWSES) II program. Progr. Earth Planet. Sci., 2, 28, doi:10.1186/s40645-015-0059-0.   DOI
15 Tinsley, B. A., and F. Yu, 2004: Atmospheric ionization and clouds as links between solar activity and climate. In Geophysical Monograph Series, Vol. 141, Solar Variability and Its Effects on Climate. J. M. Pap Eds., American Geophysical Union, 321-339, doi:10.1029/141GM22.   DOI
16 Todd, M. C., and D. R. Kniveton, 2004: Short-term variability in satellite-derived cloud cover and galactic cosmic rays: Update. J. Atmos. Sol.-Terr. Phy., 66, 1205-1211, doi:10.1016/j.jastp.2004.05.002.   DOI
17 Trostl, J., and Coauthors, 2016: The role of low-volatility organic compounds in initial particle growth in the atmosphere. Nature, 533, 527-531, doi:10.1038/nature18271.   DOI
18 Yu, F., 2002: Altitude variations of cosmic ray induced production of aerosols: Implications for global cloudness and climate. J. Geophys. Res., 107,SIA8-1-10, doi:10.1029/2001JA000248.   DOI
19 WMO, 2016: Four-year plan for WMO activities related to space weather 2016-2019. World Meteorological Organization, Draft 2.1, 23 pp.
20 Kirkby, J., and Coauthors, 2011: Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature, 476, 429-433, doi:10.1038/nature10343.   DOI
21 Kirkby, J., and Coauthors, 2016: Ion-induced nucleation of pure biogenic particles. Nature, 533, 521-526, doi:10.1038/nature17953.   DOI
22 Kniveton, D. R., 2004: Precipitation, cloud cover and Forbush decreases in galactic cosmic rays. J. Atmos. Sol.-Terr. Phy., 66, 1135-1142, doi:10.1016/j.jastp.2004.05.010.   DOI
23 Kristjansson, J. E., and J. Kristiansen, 2000: Is there a cosmic ray signal in recent variations in global cloudiness and cloud radiative forcing? J. Geophys. Res., 105, 11851-11863.   DOI
24 Kirkby, J., 2007: Cosmic rays and climate. Surv. Geophys., 28, 333-375.   DOI
25 Kristjansson, J. E., C. W. Stjern, F. Stordal, A. M. Fjaeraa, G. Myhre, and K. Jonasson, 2008: Cosmic rays, cloud condensation nuclei and clouds-a reassessment using MODIS data. Atmos. Chem. Phys., 8, 7373-7387.
26 Kulmala, M., and Coauthors, 2010: Atmospheric data over a solar cycle: No connection between galactic cosmic rays and new particle formation. Atmos. Chem. Phys., 10, 1885-1898, doi:10.5194/acp-10-1885-2010.   DOI
27 Laken, B. A., and J. Calogovic, 2011: Solar irradiance, cosmic rays and cloudiness over daily timescales. Geophys. Res. Lett., 38, L24811, doi:10.1029/2011GL049764.   DOI
28 Laken, B. A., E. Palle, J. Calogovic, and E. M. Dunne, 2012a: A cosmic ray-climate link and cloud observations. J. Space Weather Spac., 2, A18, doi:10.1051/swsc/2012018.   DOI
29 Laken, B. A., E. Palle, and H. Miyahara, 2012b: A decade of the Moderate Resolution Imaging Spectrometer: Is a solar-cloud link detectable? J. Climate, 25, 4430-4440, doi:10.1175/JCLI-D-11-00306.1.   DOI
30 Lehtipalo, K., and Coauthors, 2016: The effect of acid-base clustering and ions on the growth of atmospheric nano-particles. Nat. Commun., 7, 11594, doi:10.1038/ncomms11594.   DOI
31 Letessier-Selvon, A., and T. Stanev, 2011: Ultrahigh energy cosmic rays. Rev. Mod. Phys., 83, 907-942, doi:10.1103/RevModPhys.83.907.   DOI
32 Marsh, N. D., and H. Svensmark, 2000: Low cloud properties influenced by cosmic rays. Phys. Rev. Lett., 85, 5004-5007, doi:10.1103/PhysRevLett.85.5004.   DOI
33 Moon, B.-K., and J.-G. Jhun, 2006: The relationship between 11-year solar cycle and midlatitude precipitation. J. Korean Meteor. Soc., 42, 307-312.
34 Myhre, G., and Coauthors, 2013: Anthropogenic and natural radiative forcing. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. T. F. Stocker, Eds., Cambridge University Press, 658-740.
35 Ney, E. P., 1959: Cosmic radiation and the weather. Nature, 183, 451-452.   DOI
36 Oh, S., J. W. Bieber, P. Evenson, J. Clem, Y. Yi, and Y. Kim, 2013: Record neutron monitor counting rates from gaalactic cosmic rays. J. Geophys. Res., 118, 5431-5436, doi:10.1002/jgra.50544.   DOI
37 Ackermann, M., and Coauthors, 2013: Detection of the characteristic pion-decay signature in supernova remnants. Science, 339, 807-811, doi:10.1126/science.1231160.   DOI
38 Owens, M. J., C. J. Scott, A. J. Bennett, S. R. Thomas, M. Lockwood, R. G. Harrison, and M. M. Lam, 2015: Lightning as a space-weather hazard: UK thunderstorm activity modulated by the passage of the heliospheric current sheet. Geophys. Res. Lett., 42, 9624-9632, doi:10.1002/2015GL066802.   DOI
39 Pinto, N. O., I. R. C. A. Pinto, and O. Pinto Jr., 2013: The relationship between thunderstorm and solar activity for Brazil from 1951 to 2009. J. Atmos. Sol.-Terr. Phy., 98, 12-21, doi:10.1016/j.jastp.2013.03.010.   DOI
40 Pomerantz, M. A., 1984: Obituary: Scott Ellsworth Forbush. Phys. Today, 37, 111.
41 Agee, E. M., K. Kiefer, and E. Cornett, 2012: Relationship of lower-troposphere cloud cover and cosmic rays: An updated perspective. J. Climate, 25, 1057-1060, doi:10.1175/JCLI-D-11-00169.1.   DOI
42 Brooks, C. E. P., 1934: The variation of the annual frequency of thunderstorms in relation to sunspots. Quart. J. Roy. Meteor. Soc., 60, 153-166.
43 Carslaw, K. S., R. G. Harrison, and J. Kirkby, 2002: Cosmic rays, clouds, and climate. Science, 298, 1732-1737.   DOI
44 Sloan, T., and A. Wolfendale, 2008: Testing the proposed causal link between cosmic rays and cloud cover. Environ. Res. Lett., 3, 024001, doi:10.1088/1748-9326/3/2/024001.   DOI
45 Schlegel, K., G. Diendorfer, S. Thern, and M. Schmidt, 2001: Thunderstorms, lightning and solar activity-Middle Europe. J. Atmos. Sol.-Terr. Phy., 63, 1705-1713.   DOI
46 Schobesberger, S., and Coauthors, 2013: Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules. Proc. Natl. Acad. Sci., 110, 17223-17228, doi:10.1073/pnas.1306973110.   DOI
47 Scott, C. J., R. G. Harrison, M. J. Owens, M. Lockwood, and L. Barnard, 2014: Evidence for solar wind modulation of lightning. Environ. Res. Lett., 9, 055004, doi:10.1088/1748-9326/9/5/055004.   DOI
48 Sloan, T., and A. Wolfendale, 2013: Cosmic rays, solar activity and the climate. Environ. Res. Lett., 8, 045022, doi:10.1088/1748-9326/8/4/045022.   DOI
49 Stringfellow, M. F., 1974: Lightning incidence in Britain and the solar cycle. Nature, 249, 332-333.   DOI
50 Cho, I.-H., Y.-S. Kwak, H.-Y. Chang, K.-S. Cho, Y.-H. Kim, and Y.-D. Park, 2012a: The global temperature anomaly and solar north-south asymmetry. Asia-Pac. J. Atmos. Sci., 48, 253-257, doi:10.1007/s13143-012-0025-3.   DOI
51 Svensmark, H., 1998: Influence of cosmic rays on Earth's climate. Phys. Rev. Lett., 81, 5027-5030.   DOI
52 Svensmark, H., 2000: Cosmic rays and Earth's climate. In Cosmic Rays and Earth: Space Sciences Series of ISSI, vol 10. J. W. Bieber Eds., Springer, 175-186.
53 Svensmark, H., 2015: Cosmic rays, clouds and climate. Europhys. News, 46, 26-29, doi:10.1051/epn/2015204.   DOI
54 Svensmark, H., and E. Friis-Christensen, 1997: Variation of cosmic ray flux and global cloud coverage-a missing link in solar-climate relationships. J. Atmos. Sol.-Terr. Phy., 59, 1225-1232, doi:10.1016/S1364-6826(97)00001-1.   DOI
55 CLOUD Collaboration, 2000: A study of the link between cosmic rays and clouds with a cloud chamber at the CERN PS. CERN/SPSC-2000?021, SPSC/P317, 107 pp. [Available online at http://cloud.web.cern.ch/cloud.].
56 Cho, I.-H., Y.-S. Kwak, K. Marubashi, Y.-H. Kim, Y.-D. Park, and H.-Y. Chang, 2012b: Changes in see-level pressure over South-Korea associated with high-speed solar wind events. Adv. Space Res., 50, 777-782, doi:10.1016/j.asr.2011.06.025.   DOI
57 Choi, H.-S., and Coauthors, 2011: Analysis of GEO spacecraft anomalies: Space weather relationships. Space Weather, 9, S06001, doi:10.1029/2010SW000597.   DOI
58 Chronis, T. G., 2009: Investigating possible links between incoming cosmic ray fluxes and lightning activity over the United States. J. Climate, 22, 5748-5754.   DOI
59 Crutzen, P. J., I. S. A. Isaksen, and G. C. Reid, 1975: Solar proton events: Stratospheric sources of nitric oxide. Science, 189, 457-459.   DOI
60 Dickinson, R. E., 1975: Solar variability and the lower atmosphere. Bull. Amer. Meteor. Soc., 56, 1240-1248.   DOI
61 Dunne, E. M., and Coauthors, 2016: Global atmospheric particle formation from CERN CLOUD measurements. Science, 354, 1119-1124, doi:10.1126/science.aaf2649.   DOI
62 Egorova, L. V., V. Y. Vovk, and O. A. Troshichev, 2000: Influence of variations of the cosmic rays on atmospheric pressure and temperature in the Southern geomagnetic pole region. J. Atmos. Sol.-Terr. Phy., 62, 955-966.   DOI
63 Duplissy, J., and Coauthors, 2016: Effect of ions on sulfuric acid-water binary particle formation: 2. Experimental data and comparison with QC-normalized classical nucleation theory. J. Geophys. Res., 121, 1752-1775, doi:10.1002/2015JD023539.   DOI