Browse > Article
http://dx.doi.org/10.14191/Atmos.2022.32.4.341

Analysis of PM10 Reduction Effects with Artificial Rain Enhancement Using Numerical Models  

Lim, Yun-Kyu (Research Applications Department, National Institute of Meteorological Sciences, KMA)
Kim, Bu-Yo (Research Applications Department, National Institute of Meteorological Sciences, KMA)
Chang, Ki-Ho (Research Applications Department, National Institute of Meteorological Sciences, KMA)
Cha, Joo Wan (Research Applications Department, National Institute of Meteorological Sciences, KMA)
Lee, Yong Hee (Research Applications Department, National Institute of Meteorological Sciences, KMA)
Publication Information
Atmosphere / v.32, no.4, 2022 , pp. 341-351 More about this Journal
Abstract
Recently, interest in the possibility of a washout effect using artificial rain enhancement technology to reduce high-concentration fine dust is growing. Therefore, in this study, the reduction rate of PM10 concentration according to the amount of artificial rain enhancement was calculated during Asian Dust event which occurred over the Korean Peninsula on March 29, 2021 using air quality model [i.e., Community Multiscale Air Quality (CMAQ)] combined with the mesoscale model for artificial rain enhancement (i.e., WRF-MMS). According to WRF-MMS, the washout effect lasted 5 hours, and the maximum precipitation rate was calculated to be 1.5 mm hr-1. According the CMAQ results, the PM10 reduction rate was up to 22%, and the affected area was calculated to be 6.4 times greater than that of the artificial rain enhancement area. Even if the maximum amount of precipitation per hour is lowered to 0.8 mm hr-1 (about 50% level), the PM10 reduction rate appears to be up to 16%. In other words, it is believed that this technique can be used as a direct method for reducing high-concentration fine dust even when the artificial rain enhancement effect is weak.
Keywords
Washout; Artificial rain enhancement; $PM_{10}$; Numerical model; Reduction rate;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 NIMS, 2022: Operational Performance Report of Atmospheric Aircraft in 2021. National Institute of Meteorological Sciences, 81 pp (in Korean).
2 Park, S. U., J. H. Cho, and M. S. Park, 2012: A simulation of aerosols in Asia with the use of ADAM2 and CMAQ. Adv. Fluid Mech. Heat Mass Transfer, 258.
3 Ryoo, S. B., J. Kim, and J. H. Cho, 2020: Performance of KMA-ADAM3 in identifying Asian dust days over Northern China. Atmosphere, 11, 593, doi:10.3390/atmos11060593.   DOI
4 Wang, H. J., and H. P. Chen, 2016: Understanding the recent trend of haze pollution in eastern China: Roles of climate change. Atmos. Chem. Phys., 16, 4205-4211, doi:10.5194/acp-16-4205-2016.   DOI
5 Czernecki, B., M. Marosz, and J. Jedruszkiewicz, 2021: Assessment of machine learning algorithms in short-term forecasting of PM10 and PM2.5 concentrations in selected Polish agglomerations. Aerosol Air Qual. Res., 21, 200586, doi:10.4209/aaqr.200586.   DOI
6 Kim, C. K., S. S. Yum, and Y.-S. Park, 2015: A numerical study of winter orographic seeding experiments in Korea using the weather research and forecasting model. Meteorol. Atmos. Phys., 128, 23-38, doi:10.1007/s00703-015-0402-4.   DOI
7 Jung, W., K.-H. Chang, J. W. Cha, J. M. Ku, and C. Lee, 2022: Estimation of available days for a cloud seeding experiment in Korea. J. Environ. Sci. Int., 31, 117-129, doi:10.5322/JESI.2022.31.2.117 (in Korean with English abstract).   DOI
8 Appel, K. W., K. M. Foley, J. O. Bash, R. W. Pinder, R. L. Dennis, D. J. Allen, and K. Pickering, 2011: A multi-resolution assessment of the Community Multiscale Air Quality (CMAQ) model v4.7 wet deposition estimates for 2002-2006. Geosci. Model Dev., 4, 357-371, doi:10.5194/gmd-4-357-2011.   DOI
9 Cha, J. W., and Coauthors, 2019: Analysis of results and techniques about precipitation enhancement by aircraft seeding in Korea. Atmosphere, 29, 481-499, doi:10.14191/Atmos.2019.29.4.481 (in Korean with English abstract).   DOI
10 Chang, J. S., R. A. Brost, I. S. A. Isaksen, S. Madronich, P. Middleton, W. R. Stockwell, and C. J. Walcek, 1987: A three-dimensional Eulerian acid deposition model: Physical concepts and formulation. J. Geophys. Res. Atmos., 92, 14681-14700.   DOI
11 Guenther, A., T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer, and C. Geron, 2006: Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature). Atmos. Chem. Phys., 6, 3181-3210.   DOI
12 Kim, B.-Y., J. W. Cha, W. Jung, and A.-R. Ko, 2020b: Precipitation enhancement experiments in catchment areas of dams: Evaluation of water resource augmentation and economic benefits. Remote Sens., 12, 3730, doi:10.3390/rs12223730.   DOI
13 Chae, S., K.-H. Chang, S. Seo, J. Y. Jeong, B. J. Kim, C. K. Kim, S. S. Yum, and J. Kim, 2018: Numerical simulations of airborne glaciogenic cloud seeding using the WRF model with the modified Morrison scheme over the Pyeongchang region in the winter of 2016. Adv. Meteorol., 2018, 8453460, doi:10.1155/2018/8453460.   DOI
14 Ding, Y. H., and Y. J. Liu, 2014: Analysis of long-term variations of fog and haze in China in recent 50 years and their relations with atmospheric humidity. Sci. China Earth Sci., 57, 36-46, doi:10.1007/s11430-013-4792-1   DOI
15 Hur, S. K., C. H. Ho, J. Kim, H. R. Oh, and Y. S. Koo, 2021: Systematic bias of WRF-CMAQ PM10 simulations for Seoul, Korea. Atmos. Environ., 244, 117904, doi:10.1016/j.atmosenv.2020.117904.   DOI
16 Kim, S. U., and K. Y. Kim, 2020: Physical and chemical mechanisms of the daily-to-seasonal variation of PM10 in Korea. Sci. Total Environ., 712, 136429, doi:10.1016/j.scitotenv.2019.136429.   DOI
17 Lee, S., C. H. Ho, and Y. S. Choi, 2011: High-PM10 concentration episodes in Seoul, Korea: background sources and related meteorological conditions. Atmos. Environ., 45, 7240-7247, doi:10.1016/j.atmosenv.2011.08.071.   DOI
18 Korneev, V. P., E. I. Potapov, and G. G. Shchukin, 2017: Environmental aspects of cloud seeding. Russ. Meteorol. Hydrol., 42, 477-483, doi:10.3103/S106837391707007X.   DOI
19 Kim, B.-Y., J. W. Cha, A.-R. Ko, W. Jung, and J.-C. Ha, 2020a: Analysis of the occurrence frequency of seed-able clouds on the Korean Peninsula for precipitation enhancement experiments. Remote Sens., 12, 1487, doi:10.3390/rs12091487.   DOI
20 Kim, B.-Y., Y. K. Lim, and J. W. Cha, 2022: Short-term prediction of particulate matter (PM10 and PM2.5) in Seoul, South Korea using tree-based machine learning algorithms. Atmos. Pollut. Res., 13, 101547, doi:10.1016/j.apr.2022.101547.   DOI
21 Minh, V. T. T., T. T. Tin, and T. T. Hien, 2021: PM2.5 forecast system by using machine learning and WRF model, a case study: Ho Chi Minh city, Vietnam. Aerosol Air Qual. Res., 21, 210108, doi:10.4209/aaqr.210108   DOI
22 MOE, 2021: 2021 White Paper of Environment. Ministration of Environment, 914 pp (in Korean).
23 Gao, B., W. Ouyang, H. Cheng, Y. Xu, C. Lin, and J. Chen, 2019: Interactions between rainfall and fine particulate matter investigated by simultaneous chemical composition measurements in downtown Beijing. Atmos. Environ., 218, 117000, doi:10.1016/j.atmosenv.2019.117000.   DOI
24 Tessendorf, S. A., and Coauthors, 2019: A transformational approach to winter orographic weather modification research: The SNOWIE project. Bull. Am. Meteorol. Soc., 100, 71-92, doi:10.1175/BAMS-D-17-0152.1.   DOI
25 Oh, H. R., C. H. Ho, Y. S. Koo, K. G. Baek, H. Y. Yun, S. K. Hur, D. R. Choi, J. G. Jhun, and J. S. Shim, 2020: Impact of Chinese air pollutants on a record-breaking PMs episode in the Republic of Korea for 11-15 January 2019. Atmos. Environ., 223, 117262, doi:10.1016/j.atmosenv.2020.117262.   DOI
26 Ouyang, W., B. Guo, G. Cai, Q. Li, S. Han, B. Liu, and X. Liu, 2015: The washing effect of precipitation on particulate matter and the pollution dynamics of rainwater in downtown Beijing. Sci. Total Environ., 505, 306-314, doi:10.1016/j.scitotenv.2014.09.062.   DOI
27 Peterson, D. A., and Coauthors, 2019: Meteorology influencing springtime air quality, pollution transport, and visibility in Korea. Elementa Sci. Anthropocene, 7, 57, doi:10.1525/elementa.395.   DOI
28 Press Trust of India, 2018: Air pollution: Delhi's overall air quality 'very poor', artificial rain may be induced. [Available online at https://swachhindia.ndtv.com/delhi-air-quality-worsens-artificial-rain-to-be-induced-28132/].
29 Support the Guardian, 2021: China 'modified' the weather to create clear skies for political celebration - study. [Available online at https://www.theguardian.com/world/2021/dec/06/china-modified-the-weather-to-create-clear-skies-for-political-celebration-study].
30 Yang, G., H. Lee, and G. Lee, 2020: A hybrid deep learning model to forecast particulate matter concentration levels in Seoul, South Korea. Atmosphere, 11, 348, doi:10.3390/atmos11040348.   DOI
31 Kim, Y. P., and G. Lee, 2018: Trend of air quality in Seoul: policy and science. Aerosol Air Qual. Res., 18, 2141-2156, doi:10.4209/aaqr.2018.03.0081.   DOI