Browse > Article
http://dx.doi.org/10.14191/Atmos.2013.23.3.321

An Analysis of Aerosols Impacts on the Vertical Invigoration of Continental Stratiform Clouds  

Kim, Yoo-Jun (High Impact Weather Research Center, Forecast Research Division, National Institute of Meteorological Research, Korea Meteorological Administration)
Han, Sang-Ok (High Impact Weather Research Center, Forecast Research Division, National Institute of Meteorological Research, Korea Meteorological Administration)
Lee, Chulkyu (Applied Meteorological Research Division, National Institute of Meteorological Research, Korea Meteorological Administration)
Lee, Seoung-Soo (Earth System Research Laboratory, National Oceanic and Atmospheric Administration)
Kim, Byung-Gon (Department of Atmospheric Environmental Sciences, Gangneung-Wonju National University)
Publication Information
Atmosphere / v.23, no.3, 2013 , pp. 321-329 More about this Journal
Abstract
This study examines the effect of aerosols on the vertical invigoration of continental stratiform clouds, using a dataset of Atmospheric Radiation Measurement (ARM) Intensive Operational Period (IOP, March 2000) at the Southern Great Plains (SGP) site. To provide further support to our observation-based findings, the weather research and forecasting (WRF) sensitivity simulations with changing cloud condensation nuclei (CCN) concentrations have been carried out for the golden episode over SGP. First, cross correlation between observed aerosol scattering coefficient and cloud liquid water path (LWP) with a 160-minutes lag is the highest of r = 0.83 for the selected episode, which may be attributable to cloud vertical invigoration induced by an increase in aerosol loading. Modeled cloud fractions in a control run are well matched with the observation in the perspective of cloud morphology and lasting period. It is also found through a simple sensitivity with a change in CCN that aerosol invigoration (AIV) effect on stratiform cloud organization is attributable to a change in the cloud microphysics as well as dynamics such as the corresponding modification of cloud number concentrations, drop size, and latent heating rate, etc. This study suggests a possible cloud vertical invigoration even in the continental stratiform clouds due to aerosol enhancement in spite of a limited analysis based on a few observed continental cloud cases.
Keywords
ARM; aerosol; invigoration; cloud condensation nuclei; latent heating;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Albrecht, B. A., W. F. Christopher, W. T. Dennis, and B. W. Allen, 1990: Surface-based remote sensing of the observed and the adiabatic liquid water content of stratocumulus clouds. Geophys. Res. Lett., 1, 89-92.
2 Anderson, T. L., R. J. Charlson, D. M. Winker, J. A. Ogren, and K. Holmen, 2003: Mesoscale variations of tropospheric aerosols. J. Atmos. Sci., 60, 119-136.   DOI
3 Andreae, M. O., D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longo, and M. A. F. Silva-Dias, 2004: Smoking rain clouds over the Amazon. Science, 303, 1737-1342.
4 Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569-585.   DOI   ScienceOn
5 Fan, J., D. Rosenfeld, Y. Ding, L. R. Leung, and Z. Li, 2012: Potential aerosol indirect effects on atmospheric circulation and radiative forcing through deep convection. Geophys. Res. Lett., 39, L09806.
6 Fan, J., T. Yuan, J. M. Comstock, S. Ghan, A. Khain, L. R. Leung, Z. Li, V. J. Martins, and M. Ovchinnikov, 2009: Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. J. Geophys. Res., 114, D22206.   DOI
7 Feingold, G., H. Jiang, and J. Y. Harrington, 2005: On smoke suppression of clouds in Amazonia. Geophys. Res. Lett., 32, L02804.
8 Hong, S.-Y., Y. Noah, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-1341.   DOI   ScienceOn
9 Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.   DOI
10 Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. Meteor. Monogr., 24, 165-170.
11 Khain, A. P., N. BenMoshe, and A. Pokrovsky, 2008: Factors determining the impact of aerosols on surface precipitation from clouds: An attempt at classification. J. Atmos. Sci., 65, 1721.   DOI   ScienceOn
12 Kim, Y.-J., B.-G. Kim, M. Miller, Q. Min, and C.-K. Song, 2012: Enhanced aerosol-cloud relationships in more stable and adiabatic clouds. Asia-Pacific J. Atmos. Sci., 48, 283-293.   DOI   ScienceOn
13 Koren, I., G. Feingold, and L. A. Remer, 2010: The invigoration of deep convective clouds over the Atlantic: aerosol effect, meteorology or retrieval artifact?. Atmos. Chem. Phys., 10, 8855-8872.   DOI
14 Koren, I., O. Altaratz, L. A. Remer, G. Feingold, J. V. Martins, and R. H. Heiblum, 2012: Aerosol-induced intensification of rain from the tropics to the mid-latitudes. Nature Geosci., 5, 118-122.   DOI
15 Lebo, Z. J., H. Morrison, and J. H. Seinfeld, 2012: Are simulated aerosol-induced effects on deep convective clouds strongly dependent on saturation adjustment?. Atmos. Chem. Phys., 12, 9941-9964.   DOI
16 Lee, S. S., and G. Feingold, 2010: Precipitating cloud-system response to aerosol perturbations. Geophys. Res. Lett., 37, L23806.
17 Lee, S. S., G. Feingold, and P. Chuang, 2012: Effects of aerosol on cloud-environment interactions in trade cumulus. J. Atmos. Sci., doi:10.1175/JAS-D-12-026.1.   DOI
18 Martin, G. M., D. W. Johnson, and A. Spice, 1994: The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. J. Atmos. Sci., 51, 1823-1842.   DOI   ScienceOn
19 Li, Z., F. Niu, J. Fan, Y. Liu, D. Rosenfeld, and Y. Ding, 2011: Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nature Geosci., doi:10.1038/NGEO1313.   DOI
20 Lim, K.-S. S., and S. Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 1587-1612.   DOI   ScienceOn
21 McComiskey, A., and G. Feingold, 2012: The scale problem in quantifying aerosol indirect effects. Atmos. Chem. Phys., 12, 1031-1049.   DOI
22 Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, 2001: Aerosols, climate, and the hydrological cycle. Science, 294, 2119-2123.   DOI   ScienceOn
23 Rosenfeld, D., 1999: TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett., 26, 3105-3108.   DOI
24 Rosenfeld, D., W. L. Woodley, A. Khain, W. R. Cotton, G. Carrio, I. Ginis, and J. H. Golden, 2012: Aerosol effects on microstructure and intensity of tropical cyclones. Bull. Amer. Meteor. Soc., 987-1001.
25 Song, K. Y., and S. S. Yum, 2012: Anthropogenic radiative forcing of marine stratocumulus clouds under different thermodynamic conditions - An LES model study. Atmos. Res., 118, 370-389.   DOI   ScienceOn
26 Stevens, B., and G. Feingold, 2009: Untangling aerosol effects on clouds and precipitation in a buffered system. Nature, 461, 607-613.   DOI   ScienceOn
27 Teng, H., W. M. Washington, G. Branstator, G. A. Meehl, and J. F. Lamarque, 2012: Potential impacts of Asian carbon aerosols on future US warming. Geophys. Res. Lett., 39, L11703.
28 Warner, J., and S. Twomey, 1967: The production of cloud nuclei by cane fires and the effects on cloud droplet concentration. J. Atmos. Sci., 24, 704-706.   DOI
29 Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 1149-1152.   DOI